Computational analysis of the alpha-2 domain of apolipoprotein B - 100, a potential triggering factor in LDL aggregation.

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. General subjects Pub Date : 2024-12-15 DOI:10.1016/j.bbagen.2024.130742
Joanne Jennifer E Tan, Marvin M Bilog, Adam A Profit, Francisco M Heralde, Ruel Z B Desamero
{"title":"Computational analysis of the alpha-2 domain of apolipoprotein B - 100, a potential triggering factor in LDL aggregation.","authors":"Joanne Jennifer E Tan, Marvin M Bilog, Adam A Profit, Francisco M Heralde, Ruel Z B Desamero","doi":"10.1016/j.bbagen.2024.130742","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis, the major underlying cause of cardiovascular disease, is believed to arise from the accumulation of low-density lipoprotein (LDL) in the arterial subendothelial space, ultimately leading to plaque formation. It is proposed that the accumulation of LDL is linked to its intrinsic aggregation propensity. Although the native LDL is not prone to aggregation, LDL(-), an electronegative LDL characterized in the plasma, has been shown to prime LDL aggregation in a domino-like behavior similar to amyloidogenic proteins. LDL(-) has also been observed to have a misfolded apolipoprotein B-100 (apo B-100), a huge protein consisting of 4563 amino acid residues. As misfolding of proteins is commonly associated with amyloid formation, apo B-100 is therefore being considered as the possible triggering factor in LDL aggregation. Previous computational studies have implicated the α2 domain to be the aggregation-prone region of apo B-100. In this study, the amyloidogenic properties of the α2 domain of apo B-100 were interrogated using both in silico and in vitro techniques. Since the crystal structure of the 570-amino acid α2 domain of apo B-100 is yet to be solved, we used several secondary structure prediction tools to model putative helical regions that make up the α2 domain. The stability of each of the 17 helices thus identified was further probed using molecular dynamics (MD), with the least stable of the helices considered as potentially amyloidogenic. In a 100 ns simulation window, helices k (YFEKLVGFIDDAVK), m (YHQFVDETNDKIREVTQRLNGEIQA), and p (QQELQRYLSLVGQVYS) were the least stable and appeared to transition to β-structures, the hallmark of amyloidogenesis. When the simulation was extended to longer times, only helices k and p formed stable β-sheets that persisted. Analysis of the data indicates that the final β-sheet conformation was stabilized by the π-π stacking interactions between the aromatic rings of Tyr-1 and Phe-8 for helix k and likely π-π stacking contacts between Arg-6 guanidino group and Tyr-15 ring for helix p. Based on the in silico work, we proceeded to synthesize and spectroscopically characterize helices k, m<sub>17</sub><sub>-</sub><sub>25</sub> (QRLNGEIQA), and p. As expected, k and p formed detectable amyloids, with the latter appearing to be substantially more amyloidogenic based on kinetic aggregation assays. Amyloid fibrils formed by p were confirmed using circular dichroism spectroscopy and transmission electron microscopy. Data obtained could be exploited to further investigate the roles of peptides derived from the α2 domain helices of apo B-100 in triggering LDL aggregation. Based on preliminary data, one of the peptides designed based on this work reduced the aggregation of LDL.</p>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":" ","pages":"130742"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbagen.2024.130742","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerosis, the major underlying cause of cardiovascular disease, is believed to arise from the accumulation of low-density lipoprotein (LDL) in the arterial subendothelial space, ultimately leading to plaque formation. It is proposed that the accumulation of LDL is linked to its intrinsic aggregation propensity. Although the native LDL is not prone to aggregation, LDL(-), an electronegative LDL characterized in the plasma, has been shown to prime LDL aggregation in a domino-like behavior similar to amyloidogenic proteins. LDL(-) has also been observed to have a misfolded apolipoprotein B-100 (apo B-100), a huge protein consisting of 4563 amino acid residues. As misfolding of proteins is commonly associated with amyloid formation, apo B-100 is therefore being considered as the possible triggering factor in LDL aggregation. Previous computational studies have implicated the α2 domain to be the aggregation-prone region of apo B-100. In this study, the amyloidogenic properties of the α2 domain of apo B-100 were interrogated using both in silico and in vitro techniques. Since the crystal structure of the 570-amino acid α2 domain of apo B-100 is yet to be solved, we used several secondary structure prediction tools to model putative helical regions that make up the α2 domain. The stability of each of the 17 helices thus identified was further probed using molecular dynamics (MD), with the least stable of the helices considered as potentially amyloidogenic. In a 100 ns simulation window, helices k (YFEKLVGFIDDAVK), m (YHQFVDETNDKIREVTQRLNGEIQA), and p (QQELQRYLSLVGQVYS) were the least stable and appeared to transition to β-structures, the hallmark of amyloidogenesis. When the simulation was extended to longer times, only helices k and p formed stable β-sheets that persisted. Analysis of the data indicates that the final β-sheet conformation was stabilized by the π-π stacking interactions between the aromatic rings of Tyr-1 and Phe-8 for helix k and likely π-π stacking contacts between Arg-6 guanidino group and Tyr-15 ring for helix p. Based on the in silico work, we proceeded to synthesize and spectroscopically characterize helices k, m17-25 (QRLNGEIQA), and p. As expected, k and p formed detectable amyloids, with the latter appearing to be substantially more amyloidogenic based on kinetic aggregation assays. Amyloid fibrils formed by p were confirmed using circular dichroism spectroscopy and transmission electron microscopy. Data obtained could be exploited to further investigate the roles of peptides derived from the α2 domain helices of apo B-100 in triggering LDL aggregation. Based on preliminary data, one of the peptides designed based on this work reduced the aggregation of LDL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochimica et biophysica acta. General subjects
Biochimica et biophysica acta. General subjects 生物-生化与分子生物学
CiteScore
6.40
自引率
0.00%
发文量
139
审稿时长
30 days
期刊介绍: BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.
期刊最新文献
BMY 7378, a selective α1D-adrenoceptor antagonist, is a new angiotensin converting enzyme inhibitor: In silico, in vitro and in vivo approach. Molecular mechanism of action of tetracycline-loaded calcium phosphate nanoparticle to kill multi-drug resistant bacteria. Computational profiling and pharmacokinetic modelling of Febuxostat: Evaluating its potential as a therapeutic agent for diabetic wound healing. Functions of unique middle loop and C-terminal tail in GnT-III activity and secretion. TOE1 deadenylase inhibits gastric cancer cell proliferation by regulating cell cycle progression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1