Contrastive Clustering-Based Patient Normalization to Improve Automated In Vivo Oral Cancer Diagnosis from Multispectral Autofluorescence Lifetime Images.

IF 4.5 2区 医学 Q1 ONCOLOGY Cancers Pub Date : 2024-12-09 DOI:10.3390/cancers16234120
Kayla Caughlin, Elvis Duran-Sierra, Shuna Cheng, Rodrigo Cuenca, Beena Ahmed, Jim Ji, Mathias Martinez, Moustafa Al-Khalil, Hussain Al-Enazi, Javier A Jo, Carlos Busso
{"title":"Contrastive Clustering-Based Patient Normalization to Improve Automated In Vivo Oral Cancer Diagnosis from Multispectral Autofluorescence Lifetime Images.","authors":"Kayla Caughlin, Elvis Duran-Sierra, Shuna Cheng, Rodrigo Cuenca, Beena Ahmed, Jim Ji, Mathias Martinez, Moustafa Al-Khalil, Hussain Al-Enazi, Javier A Jo, Carlos Busso","doi":"10.3390/cancers16234120","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Multispectral autofluorescence lifetime imaging systems have recently been developed to quickly and non-invasively assess tissue properties for applications in oral cancer diagnosis. As a non-traditional imaging modality, the autofluorescence signal collected from the system cannot be directly visually assessed by a clinician and a model is needed to generate a diagnosis for each image. However, training a deep learning model from scratch on small multispectral autofluorescence datasets can fail due to inter-patient variability, poor initialization, and overfitting. <b>Methods:</b> We propose a contrastive-based pre-training approach that teaches the network to perform patient normalization without requiring a direct comparison to a reference sample. We then use the contrastive pre-trained encoder as a favorable initialization for classification. To train the classifiers, we efficiently use available data and reduce overfitting through a multitask framework with margin delineation and cancer diagnosis tasks. We evaluate the model over 67 patients using 10-fold cross-validation and evaluate significance using paired, one-tailed <i>t</i>-tests. <b>Results:</b> The proposed approach achieves a sensitivity of 82.08% and specificity of 75.92% on the cancer diagnosis task with a sensitivity of 91.83% and specificity of 79.31% for margin delineation as an auxiliary task. In comparison to existing approaches, our method significantly outperforms a <i>support vector machine</i> (SVM) implemented with either <i>sequential feature selection</i> (SFS) (<i>p</i> = 0.0261) or L1 loss (<i>p</i> = 0.0452) when considering the average of sensitivity and specificity. Specifically, the proposed approach increases performance by 2.75% compared to the L1 model and 4.87% compared to the SFS model. In addition, there is a significant increase in specificity of 8.34% compared to the baseline autoencoder model (<i>p</i> = 0.0070). <b>Conclusions:</b> Our method effectively trains deep learning models for small data applications when existing, large pre-trained models are not suitable for fine-tuning. While we designed the network for a specific imaging modality, we report the development process so that the insights gained can be applied to address similar challenges in other non-traditional imaging modalities. A key contribution of this paper is a neural network framework for multi-spectral fluorescence lifetime-based tissue discrimination that performs patient normalization without requiring a reference (healthy) sample from each patient at test time.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"16 23","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers16234120","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Multispectral autofluorescence lifetime imaging systems have recently been developed to quickly and non-invasively assess tissue properties for applications in oral cancer diagnosis. As a non-traditional imaging modality, the autofluorescence signal collected from the system cannot be directly visually assessed by a clinician and a model is needed to generate a diagnosis for each image. However, training a deep learning model from scratch on small multispectral autofluorescence datasets can fail due to inter-patient variability, poor initialization, and overfitting. Methods: We propose a contrastive-based pre-training approach that teaches the network to perform patient normalization without requiring a direct comparison to a reference sample. We then use the contrastive pre-trained encoder as a favorable initialization for classification. To train the classifiers, we efficiently use available data and reduce overfitting through a multitask framework with margin delineation and cancer diagnosis tasks. We evaluate the model over 67 patients using 10-fold cross-validation and evaluate significance using paired, one-tailed t-tests. Results: The proposed approach achieves a sensitivity of 82.08% and specificity of 75.92% on the cancer diagnosis task with a sensitivity of 91.83% and specificity of 79.31% for margin delineation as an auxiliary task. In comparison to existing approaches, our method significantly outperforms a support vector machine (SVM) implemented with either sequential feature selection (SFS) (p = 0.0261) or L1 loss (p = 0.0452) when considering the average of sensitivity and specificity. Specifically, the proposed approach increases performance by 2.75% compared to the L1 model and 4.87% compared to the SFS model. In addition, there is a significant increase in specificity of 8.34% compared to the baseline autoencoder model (p = 0.0070). Conclusions: Our method effectively trains deep learning models for small data applications when existing, large pre-trained models are not suitable for fine-tuning. While we designed the network for a specific imaging modality, we report the development process so that the insights gained can be applied to address similar challenges in other non-traditional imaging modalities. A key contribution of this paper is a neural network framework for multi-spectral fluorescence lifetime-based tissue discrimination that performs patient normalization without requiring a reference (healthy) sample from each patient at test time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancers
Cancers Medicine-Oncology
CiteScore
8.00
自引率
9.60%
发文量
5371
审稿时长
18.07 days
期刊介绍: Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Correction: De Sanctis et al. Lck Function and Modulation: Immune Cytotoxic Response and Tumor Treatment More Than a Simple Event. Cancers 2024, 16, 2630. Contrastive Clustering-Based Patient Normalization to Improve Automated In Vivo Oral Cancer Diagnosis from Multispectral Autofluorescence Lifetime Images. Classification and Prognostic Stratification Based on Genomic Features in Myelodysplastic and Myeloproliferative Neoplasm- and Their Overlapping Conditions. Oncologic Outcomes in Patients with Localized, Primary Head and Neck Synovial Sarcoma. Implications of Clonal Hematopoiesis in Hematological and Non-Hematological Disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1