Nanoparticle biosensors for cardiovascular disease detection.

IF 3.2 3区 医学 Q2 MEDICAL LABORATORY TECHNOLOGY Clinica Chimica Acta Pub Date : 2024-12-14 DOI:10.1016/j.cca.2024.120094
Mohamed J Saadh, Faris Anad Muhammad, Rafid Jihad Albadr, Ashok Kumar Bishoyi, Suhas Ballal, Lakshay Bareja, K Satyam Naidu, Jasur Rizaev, Waam Mohammed Taher, Mariem Alwan, Mahmood Jasem Jawad, Ali M Ali Al-Nuaimi
{"title":"Nanoparticle biosensors for cardiovascular disease detection.","authors":"Mohamed J Saadh, Faris Anad Muhammad, Rafid Jihad Albadr, Ashok Kumar Bishoyi, Suhas Ballal, Lakshay Bareja, K Satyam Naidu, Jasur Rizaev, Waam Mohammed Taher, Mariem Alwan, Mahmood Jasem Jawad, Ali M Ali Al-Nuaimi","doi":"10.1016/j.cca.2024.120094","DOIUrl":null,"url":null,"abstract":"<p><p>Early detection and management of cardiovascular diseases (CVDs) are crucial for patient survival and long-term health. CVD biomarkers such as cardiac Troponin-I (cTnI), N-terminal pro-brain natriuretic peptide (NT-proBNP), creatine kinase MB (CK-MB), Galectin-3 (Gal-3), etc are released into the circulation following heart muscle injury, ie, acute myocardial infarction (AMI). Biosensor technology including the use of nanoparticles can be designed to target specific biomarkers associated with CVD, enabling early detection and more rapid intervention to decrease morbidity and mortality. To date, with the combination of developed nanoparticles, several optical and electrochemical-based biosensors have successfully been used detection of CVD biomarkers. Nanomaterials, when introduced as the modifiers of sensor surfaces like electrodes and gold chips, can result in the more comprehensive and more effective immobilization of capture molecules, ie, antibodies, aptamers and other ligands, due to their large surface area. In recent years, inorganic nanoparticles have regularly been used in the production of biosensors mostly due to their excellent response intensification, adaptable functionalization chemistry, shape control, good biocompatibility, and great stability. In this review, we discuss the application of different kinds of nanoparticles for the sensitive and specific detection of CVD biomarkers.</p>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":" ","pages":"120094"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cca.2024.120094","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Early detection and management of cardiovascular diseases (CVDs) are crucial for patient survival and long-term health. CVD biomarkers such as cardiac Troponin-I (cTnI), N-terminal pro-brain natriuretic peptide (NT-proBNP), creatine kinase MB (CK-MB), Galectin-3 (Gal-3), etc are released into the circulation following heart muscle injury, ie, acute myocardial infarction (AMI). Biosensor technology including the use of nanoparticles can be designed to target specific biomarkers associated with CVD, enabling early detection and more rapid intervention to decrease morbidity and mortality. To date, with the combination of developed nanoparticles, several optical and electrochemical-based biosensors have successfully been used detection of CVD biomarkers. Nanomaterials, when introduced as the modifiers of sensor surfaces like electrodes and gold chips, can result in the more comprehensive and more effective immobilization of capture molecules, ie, antibodies, aptamers and other ligands, due to their large surface area. In recent years, inorganic nanoparticles have regularly been used in the production of biosensors mostly due to their excellent response intensification, adaptable functionalization chemistry, shape control, good biocompatibility, and great stability. In this review, we discuss the application of different kinds of nanoparticles for the sensitive and specific detection of CVD biomarkers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于检测心血管疾病的纳米粒子生物传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinica Chimica Acta
Clinica Chimica Acta 医学-医学实验技术
CiteScore
10.10
自引率
2.00%
发文量
1268
审稿时长
23 days
期刊介绍: The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells. The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.
期刊最新文献
Corrigendum to "Irisin in thyroid diseases" [Clin. Chim. Acta 564 (2025) 119929]. Steroid hormone concentrations in dried blood spots: A comparison between capillary and venous blood samples. A nomogram model for predicting advanced liver fibrosis in patients with hepatitis B: A multicenter study. Recommendations for assessing commutability of a replacement batch of a secondary calibrator certified reference material. Biosensors for the detection of celiac disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1