Rebecca S Weller, Jaro Govaerts, Rachel Akkermans, Douglas M Jones, Hein A Daanen
{"title":"Influence of body dimensions and sex on cold-induced vasodilation.","authors":"Rebecca S Weller, Jaro Govaerts, Rachel Akkermans, Douglas M Jones, Hein A Daanen","doi":"10.1007/s00421-024-05685-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cold-induced vasodilation (CIVD) is a physiological response characterized by cyclic vasodilation occurring within 5-10 min of cold exposure, predominantly in the fingers and toes. This study aimed to determine the roles of body dimensions, specifically surface-to-mass (SM) ratio and sex in modulating CIVD responses. Thirty-nine participants (mean ± SD age: 24 ± 3 yr; height: 174 ± 28 cm; weight: 75.3 ± 15.2 kg; 20 males & 19 females) completed a 30-min immersion of the digits in ice water while sitting in a thermoneutral room (22 °C). Skin temperature was measured continuously on the anterior pads of the index, middle, ring, and little finger to assess CIVD parameters (onset time (t<sub>onset</sub>), minimum finger temperature (T<sub>min</sub>), maximum finger temperature (T<sub>max</sub>), mean finger temperature (T<sub>mean</sub>), and CIVD<sub>waves</sub>). A negative relationship was observed between T<sub>max</sub> and SM ratio (r = - 0.39, p = 0.001) and T<sub>mean</sub> and SM ratio (r = - 0.32, p = 0.001), indicating that individuals with smaller SM ratios exhibited enhanced CIVD responses. A subgroup of 7 males and 7 females with identical anthropometrics from the original cohort showed no differences between any CIVD parameter: T<sub>mean</sub> (Males: 8.0 ± 1.9 °C; Females: 8.9 ± 1.6 °C, p = 0.36), T<sub>max</sub> (Males: 11.2 ± 3.1 °C; Females: 13.1 ± 1.2 °C, p = 0.16), T<sub>min</sub> (Males: 5.9 ± 1.4 °C; Females: 5.0 ± 1.7 °C, p = 0.31), and t<sub>onset</sub> (Males: 12.0 ± 4.4 min; Females: 9.6 ± 3.6 min, p = 0.28). Therefore, body dimensions seem to play a crucial role in modulating CIVD responses, whereas sex does not.</p>","PeriodicalId":12005,"journal":{"name":"European Journal of Applied Physiology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00421-024-05685-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cold-induced vasodilation (CIVD) is a physiological response characterized by cyclic vasodilation occurring within 5-10 min of cold exposure, predominantly in the fingers and toes. This study aimed to determine the roles of body dimensions, specifically surface-to-mass (SM) ratio and sex in modulating CIVD responses. Thirty-nine participants (mean ± SD age: 24 ± 3 yr; height: 174 ± 28 cm; weight: 75.3 ± 15.2 kg; 20 males & 19 females) completed a 30-min immersion of the digits in ice water while sitting in a thermoneutral room (22 °C). Skin temperature was measured continuously on the anterior pads of the index, middle, ring, and little finger to assess CIVD parameters (onset time (tonset), minimum finger temperature (Tmin), maximum finger temperature (Tmax), mean finger temperature (Tmean), and CIVDwaves). A negative relationship was observed between Tmax and SM ratio (r = - 0.39, p = 0.001) and Tmean and SM ratio (r = - 0.32, p = 0.001), indicating that individuals with smaller SM ratios exhibited enhanced CIVD responses. A subgroup of 7 males and 7 females with identical anthropometrics from the original cohort showed no differences between any CIVD parameter: Tmean (Males: 8.0 ± 1.9 °C; Females: 8.9 ± 1.6 °C, p = 0.36), Tmax (Males: 11.2 ± 3.1 °C; Females: 13.1 ± 1.2 °C, p = 0.16), Tmin (Males: 5.9 ± 1.4 °C; Females: 5.0 ± 1.7 °C, p = 0.31), and tonset (Males: 12.0 ± 4.4 min; Females: 9.6 ± 3.6 min, p = 0.28). Therefore, body dimensions seem to play a crucial role in modulating CIVD responses, whereas sex does not.
期刊介绍:
The European Journal of Applied Physiology (EJAP) aims to promote mechanistic advances in human integrative and translational physiology. Physiology is viewed broadly, having overlapping context with related disciplines such as biomechanics, biochemistry, endocrinology, ergonomics, immunology, motor control, and nutrition. EJAP welcomes studies dealing with physical exercise, training and performance. Studies addressing physiological mechanisms are preferred over descriptive studies. Papers dealing with animal models or pathophysiological conditions are not excluded from consideration, but must be clearly relevant to human physiology.