Meiyu Zhang, Decai Li, Liujuan Sun, Yu He, Qingqing Liu, Yi He, Fang Li
{"title":"<i>Lactobacillus reuteri</i> Alleviates Hyperoxia-Induced BPD by Activating IL-22/STAT3 Signaling Pathway in Neonatal Mice.","authors":"Meiyu Zhang, Decai Li, Liujuan Sun, Yu He, Qingqing Liu, Yi He, Fang Li","doi":"10.1155/mi/4965271","DOIUrl":null,"url":null,"abstract":"<p><p>Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease in preterm infants. Little is known about the regulatory effect of lung <i>Lactobacillus</i> and its mechanism in BPD. This study explored the effect of <i>L. reuteri</i> on hyperoxia-induced mice lung injuries and examined whether <i>L. reuteri</i> played a role via the IL-22/STAT3 pathway. We found that the intranasal administration of <i>L. reuteri</i> and its tryptophan metabolite indole-3-aldehyde (3-IAld) ameliorated hyperoxia-induced mice lung BPD-like changes, deceased proinflammatory cytokines (IL-1<i>β</i>, IL-6, and TNF-<i>α</i>), and increased the levels of surfactant-associated protein C (SPC), aquaporin 5 (AQP5), and vascular endothelial growth factor receptor 2 (VEGFR2, also known as FLK-1). Furthermore, <i>L. reuteri</i> and 3-IAld increased the expression of IL-22. IL-22 was also confirmed to ameliorate hyperoxia-induced mice lung pathological changes, and the protective effects of <i>L. reuteri</i> could be inhibited by anti-IL-22 neutralizing antibody. Finally, we confirmed STAT3 activation by IL-22 in MLE-12 cells. In summary, our study confirmed <i>L. reuteri</i> alleviated hyperoxia-induced lung BPD-like changes in mice by activating the IL-22/STAT3 signaling pathway via IL-22 production. Probiotics <i>Lactobacillus</i> is a potential treatment for hyperoxia-induced lung injury in newborns.</p>","PeriodicalId":18371,"journal":{"name":"Mediators of Inflammation","volume":"2024 ","pages":"4965271"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediators of Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/mi/4965271","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease in preterm infants. Little is known about the regulatory effect of lung Lactobacillus and its mechanism in BPD. This study explored the effect of L. reuteri on hyperoxia-induced mice lung injuries and examined whether L. reuteri played a role via the IL-22/STAT3 pathway. We found that the intranasal administration of L. reuteri and its tryptophan metabolite indole-3-aldehyde (3-IAld) ameliorated hyperoxia-induced mice lung BPD-like changes, deceased proinflammatory cytokines (IL-1β, IL-6, and TNF-α), and increased the levels of surfactant-associated protein C (SPC), aquaporin 5 (AQP5), and vascular endothelial growth factor receptor 2 (VEGFR2, also known as FLK-1). Furthermore, L. reuteri and 3-IAld increased the expression of IL-22. IL-22 was also confirmed to ameliorate hyperoxia-induced mice lung pathological changes, and the protective effects of L. reuteri could be inhibited by anti-IL-22 neutralizing antibody. Finally, we confirmed STAT3 activation by IL-22 in MLE-12 cells. In summary, our study confirmed L. reuteri alleviated hyperoxia-induced lung BPD-like changes in mice by activating the IL-22/STAT3 signaling pathway via IL-22 production. Probiotics Lactobacillus is a potential treatment for hyperoxia-induced lung injury in newborns.
期刊介绍:
Mediators of Inflammation is a peer-reviewed, Open Access journal that publishes original research and review articles on all types of inflammatory mediators, including cytokines, histamine, bradykinin, prostaglandins, leukotrienes, PAF, biological response modifiers and the family of cell adhesion-promoting molecules.