Inhibition of SIK1 Alleviates the Pathologies of Psoriasis by Disrupting IL-17 Signaling.

IF 4.4 3区 医学 Q2 CELL BIOLOGY Mediators of Inflammation Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.1155/mi/3540219
Dongxuan Huang, Huimin Sun, Lianhui Su, Fan Yang, Dongsheng Huang, Hanchao Gao, Mengtao Cao
{"title":"Inhibition of SIK1 Alleviates the Pathologies of Psoriasis by Disrupting IL-17 Signaling.","authors":"Dongxuan Huang, Huimin Sun, Lianhui Su, Fan Yang, Dongsheng Huang, Hanchao Gao, Mengtao Cao","doi":"10.1155/mi/3540219","DOIUrl":null,"url":null,"abstract":"<p><p>Psoriasis is an inflammatory skin disease mediated by multiple immune cells, including T cells, macrophages, and dendritic cells, which exhibit complex pathologies and limited clinical treatment. Here, we found that salt-inducible kinase 1 (SIK1) was upregulated in the imiquimod (IMQ)-induced psoriasis mouse model. This increment may be due to a higher level of interleukin-17, which promoted the expression of SIK1 in keratinocytes. Inhibition of SIK1 kinase activity using a small molecular inhibitor (HG-9-91-01 or YKL-06-062) dramatically alleviated IMQ-induced psoriasis, showing reduced epidermal thickness, inflammation, and hyperproliferative epidermal keratinocytes. Our data demonstrated that SIK1 inhibitors HG-9-91-01 or YKL-06-062 blocked the expression of IL-17-induced proinflammatory cytokines and chemokines, including <i>Il6</i>, <i>Kc</i>, and <i>Ccl20</i>. Mechanistically, we found that SIK1 inhibitor HG-9-91-01 or YKL-06-062 suppressed the phosphorylation of I<i>κ</i>b<i>α</i> and P38. Consistently, SIK1 overexpression in keratinocytes promoted the activation of I<i>κ</i>b<i>α</i> and P38. Collectively, our results reveal that SIK1 participates to promote IL17-induced signaling through enhancing activation of NF-<i>κ</i>B and MAPKs and exacerbates psoriasis-like skin inflammation. Thus, inhibition of SIK1 presents a potential new therapeutic target for psoriasis.</p>","PeriodicalId":18371,"journal":{"name":"Mediators of Inflammation","volume":"2025 ","pages":"3540219"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediators of Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/mi/3540219","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Psoriasis is an inflammatory skin disease mediated by multiple immune cells, including T cells, macrophages, and dendritic cells, which exhibit complex pathologies and limited clinical treatment. Here, we found that salt-inducible kinase 1 (SIK1) was upregulated in the imiquimod (IMQ)-induced psoriasis mouse model. This increment may be due to a higher level of interleukin-17, which promoted the expression of SIK1 in keratinocytes. Inhibition of SIK1 kinase activity using a small molecular inhibitor (HG-9-91-01 or YKL-06-062) dramatically alleviated IMQ-induced psoriasis, showing reduced epidermal thickness, inflammation, and hyperproliferative epidermal keratinocytes. Our data demonstrated that SIK1 inhibitors HG-9-91-01 or YKL-06-062 blocked the expression of IL-17-induced proinflammatory cytokines and chemokines, including Il6, Kc, and Ccl20. Mechanistically, we found that SIK1 inhibitor HG-9-91-01 or YKL-06-062 suppressed the phosphorylation of Iκbα and P38. Consistently, SIK1 overexpression in keratinocytes promoted the activation of Iκbα and P38. Collectively, our results reveal that SIK1 participates to promote IL17-induced signaling through enhancing activation of NF-κB and MAPKs and exacerbates psoriasis-like skin inflammation. Thus, inhibition of SIK1 presents a potential new therapeutic target for psoriasis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mediators of Inflammation
Mediators of Inflammation 医学-免疫学
CiteScore
8.70
自引率
0.00%
发文量
202
审稿时长
4 months
期刊介绍: Mediators of Inflammation is a peer-reviewed, Open Access journal that publishes original research and review articles on all types of inflammatory mediators, including cytokines, histamine, bradykinin, prostaglandins, leukotrienes, PAF, biological response modifiers and the family of cell adhesion-promoting molecules.
期刊最新文献
Inhibition of SIK1 Alleviates the Pathologies of Psoriasis by Disrupting IL-17 Signaling. NLRP3 Inflammasome Activation Is Involved in Geniposide-Induced Hepatotoxicity. Elevated Type 2 Inflammatory Factors, Th2/Th1 Balanced Status, and Exosomes as a Marker of Severity in Chronic Actinic Dermatitis. Trapa natans L. Extract Attenuates Inflammation and Oxidative Damage in Cisplatin-Induced Cardiotoxicity in Rats by Promoting M2 Macrophage Polarization. METTL3/miR-192-5p/SCD1 Axis Regulates Lipid Metabolism to Affect T Cell Differentiation in Asthma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1