Moulay Ahmed Slimani, Arjun Wadhwa, Luis Felipe Gerlein, Jaime A Benavides-Guerrero, Mohamad Hassan Taherian, Ricardo Izquierdo, Sylvain G Cloutier
{"title":"Controlling the Optical and Electrical Properties of Perovskite Films and Enhancing Solar Cell Performance Using the Photonic Curing Process.","authors":"Moulay Ahmed Slimani, Arjun Wadhwa, Luis Felipe Gerlein, Jaime A Benavides-Guerrero, Mohamad Hassan Taherian, Ricardo Izquierdo, Sylvain G Cloutier","doi":"10.3390/nano14231975","DOIUrl":null,"url":null,"abstract":"<p><p>The most common method of processing metal oxide and perovskite thin films in the laboratory is thermal annealing (TA), which is a constraint for the commercialization of large-scale perovskite solar cells. Here, we present a photonic curing (PC) process to produce fully photonically annealed perovskite cells-a fast process with well-controlled, short light pulses-to develop perovskite photovoltaic devices with high efficiency. We also demonstrate how to use the parameters of the photonic annealing system to control the optical, electrical, morphological, and structural properties of perovskite layers for photovoltaic device applications. The effect of PC treatment on the microstructure, granularity, and electronic properties was studied by scanning electron microscopy (SEM), photoluminescence (PL), and transient photocurrent (TPC). The degree of conversion of the perovskite precursor and its influence on the electronic structure have been identified. SnO2 and perovskite films were treated with a single pulse and produced PCE comparable to control samples treated by TA.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231975","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The most common method of processing metal oxide and perovskite thin films in the laboratory is thermal annealing (TA), which is a constraint for the commercialization of large-scale perovskite solar cells. Here, we present a photonic curing (PC) process to produce fully photonically annealed perovskite cells-a fast process with well-controlled, short light pulses-to develop perovskite photovoltaic devices with high efficiency. We also demonstrate how to use the parameters of the photonic annealing system to control the optical, electrical, morphological, and structural properties of perovskite layers for photovoltaic device applications. The effect of PC treatment on the microstructure, granularity, and electronic properties was studied by scanning electron microscopy (SEM), photoluminescence (PL), and transient photocurrent (TPC). The degree of conversion of the perovskite precursor and its influence on the electronic structure have been identified. SnO2 and perovskite films were treated with a single pulse and produced PCE comparable to control samples treated by TA.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.