Palladium Nanocubes as Saturable Absorbers for Mode-Locked Laser Generation at 1.56 μm.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-12-08 DOI:10.3390/nano14231971
Zhe Kang, Fang Wang
{"title":"Palladium Nanocubes as Saturable Absorbers for Mode-Locked Laser Generation at 1.56 μm.","authors":"Zhe Kang, Fang Wang","doi":"10.3390/nano14231971","DOIUrl":null,"url":null,"abstract":"<p><p>Palladium (Pd) nanocubes, a type of metallic nanostructure, have demonstrated remarkable optoelectronic properties, garnering significant attention. However, their nonlinear optical characteristics and related device applications remain underexplored. In this study, we report the fabrication of a novel saturable absorber (SA) by depositing Pd nanocubes onto a D-shaped fiber (DF). The Pd nanocubes, with an average size of 12 nm, were synthesized and integrated with a DF, resulting in a highly robust SA with broadband saturable absorption characteristics. When incorporated into Er<sup>3+</sup>-doped laser cavities, the Pd-DF SA enabled the generation of ultrafast pulses with a central wavelength of 1560 nm, a corresponding repetition rate of 26.7 MHz, and a temporal width of 1.85 ps. Our findings highlight the strong potential of the Pd-DF device as a versatile SA for constructing high-energy ultrafast fiber lasers.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231971","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Palladium (Pd) nanocubes, a type of metallic nanostructure, have demonstrated remarkable optoelectronic properties, garnering significant attention. However, their nonlinear optical characteristics and related device applications remain underexplored. In this study, we report the fabrication of a novel saturable absorber (SA) by depositing Pd nanocubes onto a D-shaped fiber (DF). The Pd nanocubes, with an average size of 12 nm, were synthesized and integrated with a DF, resulting in a highly robust SA with broadband saturable absorption characteristics. When incorporated into Er3+-doped laser cavities, the Pd-DF SA enabled the generation of ultrafast pulses with a central wavelength of 1560 nm, a corresponding repetition rate of 26.7 MHz, and a temporal width of 1.85 ps. Our findings highlight the strong potential of the Pd-DF device as a versatile SA for constructing high-energy ultrafast fiber lasers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钯(Pd)纳米立方体是一种金属纳米结构,具有显著的光电特性,因而备受关注。然而,它们的非线性光学特性和相关器件应用仍未得到充分探索。在本研究中,我们报告了通过在 D 型光纤(DF)上沉积钯纳米立方体而制造出的新型可饱和吸收器(SA)。钯纳米立方体的平均尺寸为 12 nm,通过合成将其与 DF 集成在一起,产生了一种具有宽带可饱和吸收特性的高稳健性 SA。将 Pd-DF SA 与掺 Er3+ 的激光腔结合后,可产生中心波长为 1560 nm、相应重复率为 26.7 MHz、时间宽度为 1.85 ps 的超快脉冲。我们的研究结果凸显了 Pd-DF 器件作为一种多功能 SA 在构建高能超快光纤激光器方面的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Controlling the Optical and Electrical Properties of Perovskite Films and Enhancing Solar Cell Performance Using the Photonic Curing Process. Near-Field Nano-Focusing and Nano-Imaging of Dielectric Microparticle Lenses. Additive Manufacturing of Binary and Ternary Oxide Systems Using Two-Photon Polymerization and Low-Temperature Sintering. The Photomodification Method Allows for Determining the Composition of the Full and Soft Protein Corona on the Lipid Surface of Composite Nanoparticles. Theoretical Analysis of Contact Angle and Contact Angle Hysteresis of Wenzel Drops on Superhydrophobic Surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1