Victoria M Valvo, Qiang Zhang, Long Jiang, Erin A Holcomb, Ashley N Pearson, Anna G Edmunds, Hailey G Faulkner, Jadyn G James, Akshay Tate, Amanda K Huber, Zhuwen Wang, Yupei Guo, David Karnak, Leslie A Parsels, Joshua D Parsels, Yu L Lei, Alnawaz Rehemtulla, Heng Lin, Eileen S Carpenter, Daniel R Wahl, Vaibhav Sahai, Theodore S Lawrence, Michael D Green, Meredith A Morgan
{"title":"Olaparib and Radiotherapy Induce Type I Interferon- and CD8+ T Cell-Dependent Sensitization to Immunotherapy in Pancreatic Cancer.","authors":"Victoria M Valvo, Qiang Zhang, Long Jiang, Erin A Holcomb, Ashley N Pearson, Anna G Edmunds, Hailey G Faulkner, Jadyn G James, Akshay Tate, Amanda K Huber, Zhuwen Wang, Yupei Guo, David Karnak, Leslie A Parsels, Joshua D Parsels, Yu L Lei, Alnawaz Rehemtulla, Heng Lin, Eileen S Carpenter, Daniel R Wahl, Vaibhav Sahai, Theodore S Lawrence, Michael D Green, Meredith A Morgan","doi":"10.1158/1535-7163.MCT-24-0210","DOIUrl":null,"url":null,"abstract":"<p><p>PARP inhibitors sensitize pancreatic ductal adenocarcinoma (PDAC) to radiation by inducing DNA damage and replication stress. These mechanisms also have the potential to enhance radiation-induced type I interferon (T1IFN)-mediated antitumoral immune responses. We hypothesized that the PARP inhibitor olaparib would also potentiate radiation-induced T1IFN to promote antitumor immune responses and sensitization of otherwise resistant PDAC to immunotherapy. To test this hypothesis, we assessed the effects of olaparib and radiation on T1IFN production and sensitivity to αPD-L1 immunotherapy, as well as on the tumor microenvironment by single-cell RNA sequencing. We found that olaparib enhanced T1IFN production after radiation and had superior therapeutic efficacy in immunocompetent models. Olaparib and radiation treatment sensitized PDAC tumors to αPD-L1, resulting in decreased tumor burden and a 33% complete response rate. Combination treatment provided durable immune responses as shown by tumor rejection upon tumor rechallenge of previously cured mice. Furthermore, single-cell RNA sequencing analysis revealed that combination treatment induced an immunogenic tumor microenvironment characterized by interferon (IFN) responses in both PDAC and myeloid cell populations, macrophage polarization, and increased CD8+ terminal effector T-cell frequency and activity, findings which were confirmed by IHC and flow cytometry. Furthermore, CD8+ T cells and T1IFN signaling were required for therapeutic efficacy as host depletion of CD8+ T cells or the T1IFN receptor diminished treatment responses. Overall, our results indicate that olaparib enhances radiation-induced T1IFN-mediated immune signaling and subsequently an adaptive immune response, thus sensitizing pancreatic cancer to αPD-L1 therapy, supporting an ongoing clinical trial of this therapy in patients with PDAC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"OF1-OF16"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0210","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PARP inhibitors sensitize pancreatic ductal adenocarcinoma (PDAC) to radiation by inducing DNA damage and replication stress. These mechanisms also have the potential to enhance radiation-induced type I interferon (T1IFN)-mediated antitumoral immune responses. We hypothesized that the PARP inhibitor olaparib would also potentiate radiation-induced T1IFN to promote antitumor immune responses and sensitization of otherwise resistant PDAC to immunotherapy. To test this hypothesis, we assessed the effects of olaparib and radiation on T1IFN production and sensitivity to αPD-L1 immunotherapy, as well as on the tumor microenvironment by single-cell RNA sequencing. We found that olaparib enhanced T1IFN production after radiation and had superior therapeutic efficacy in immunocompetent models. Olaparib and radiation treatment sensitized PDAC tumors to αPD-L1, resulting in decreased tumor burden and a 33% complete response rate. Combination treatment provided durable immune responses as shown by tumor rejection upon tumor rechallenge of previously cured mice. Furthermore, single-cell RNA sequencing analysis revealed that combination treatment induced an immunogenic tumor microenvironment characterized by interferon (IFN) responses in both PDAC and myeloid cell populations, macrophage polarization, and increased CD8+ terminal effector T-cell frequency and activity, findings which were confirmed by IHC and flow cytometry. Furthermore, CD8+ T cells and T1IFN signaling were required for therapeutic efficacy as host depletion of CD8+ T cells or the T1IFN receptor diminished treatment responses. Overall, our results indicate that olaparib enhances radiation-induced T1IFN-mediated immune signaling and subsequently an adaptive immune response, thus sensitizing pancreatic cancer to αPD-L1 therapy, supporting an ongoing clinical trial of this therapy in patients with PDAC.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.