Hoejun Jeong, Jihyun Kim, Doyun Jung, Jangwoo Kwon
{"title":"Deep-Learning and Dynamic Time Warping-Based Approaches for the Diagnosis of Reactor Systems.","authors":"Hoejun Jeong, Jihyun Kim, Doyun Jung, Jangwoo Kwon","doi":"10.3390/s24237865","DOIUrl":null,"url":null,"abstract":"<p><p>The degradation of clamping force in the core support barrel, which forms the internal structure of a nuclear power plant, has the potential to significantly impact the plant's safety and reliability. Previous studies have concentrated on the detection of clamping force degradation but have been constrained in their ability to identify the precise size and position. This study proposes a novel methodology for diagnosing the size and position of clamping force degradation in core support barrels, combining deep-learning techniques and dynamic time warping (DTW) algorithms. DTW is applied to the magnitude data of the ex-core neutron noise signal obtained in the frequency domain, thereby enabling the effective learning of changes in sensor data values. Moreover, autoencoder-based (AE-based) representation learning is utilized to extract features of the data, preventing overfitting and thus enhancing the robustness of the model. The experiment results demonstrate that the size and position of clamping force degradation can be accurately predicted. It is expected that this research will contribute to enhancing the precision and efficiency of internal structure monitoring in nuclear power plants.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 23","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24237865","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The degradation of clamping force in the core support barrel, which forms the internal structure of a nuclear power plant, has the potential to significantly impact the plant's safety and reliability. Previous studies have concentrated on the detection of clamping force degradation but have been constrained in their ability to identify the precise size and position. This study proposes a novel methodology for diagnosing the size and position of clamping force degradation in core support barrels, combining deep-learning techniques and dynamic time warping (DTW) algorithms. DTW is applied to the magnitude data of the ex-core neutron noise signal obtained in the frequency domain, thereby enabling the effective learning of changes in sensor data values. Moreover, autoencoder-based (AE-based) representation learning is utilized to extract features of the data, preventing overfitting and thus enhancing the robustness of the model. The experiment results demonstrate that the size and position of clamping force degradation can be accurately predicted. It is expected that this research will contribute to enhancing the precision and efficiency of internal structure monitoring in nuclear power plants.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.