Saeed Musapoor, Najmeh Davoodian, Ali Kadivar, Ebrahim Ahmadi, Hassan Nazari
{"title":"Media Supplementation With Gamma-Oryzanol Improves the Outcome of Ovine Oocyte Maturation In Vitro.","authors":"Saeed Musapoor, Najmeh Davoodian, Ali Kadivar, Ebrahim Ahmadi, Hassan Nazari","doi":"10.1002/vms3.70134","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The process of maturing ovine oocyte in vitro has not yet been raised with acceptable results.</p><p><strong>Objective: </strong>This study was designed to evaluate the γ-oryzanol effect as a supplement of maturation media on the development of ovine oocytes to blastocyst.</p><p><strong>Methods: </strong>Aspirated from ovine ovaries, morphologically normal cumulus-oocyte complexes (COCs) were matured in media supplemented with or without 5 µM γ-oryzanol. Matured oocytes were divided into two parts: one evaluated for their nuclear maturation, the level of GSH and ROS, mitochondrial membrane potential (MMP) and the pattern of transcription in oocytes and respective cumulus cells (CCs), and another subjected to fertilisation and culture to assess the development of oocytes to the blastocyst.</p><p><strong>Results: </strong>γ-Oryzanol improved the proportion of cleaved embryos and total blastocysts in the treated group, which was linked to improved MMP, higher levels of intracellular GSH and lower levels of ROS. A lower proportion of MI and GVBD was recorded for treated oocytes in comparison with control, although the proportion of MII oocytes was not different between groups. The treated oocytes and CCs showed downregulation of genes related to apoptosis (BAX and CASP-9) and upregulation of genes related to antioxidative status (NRF2, CAT and SOD). In conclusion, our results demonstrated the improved developmental outcome of supplemented oocytes so that the antioxidant response and higher enzymatic activity were maintained, and the generation of ROS was turned off; therefore, a novel alternative for counteracting oxidative stress in ovine oocytes undergoing maturation was offered by γ-oryzanol through an antioxidative pathway.</p>","PeriodicalId":23543,"journal":{"name":"Veterinary Medicine and Science","volume":"11 1","pages":"e70134"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Medicine and Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/vms3.70134","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The process of maturing ovine oocyte in vitro has not yet been raised with acceptable results.
Objective: This study was designed to evaluate the γ-oryzanol effect as a supplement of maturation media on the development of ovine oocytes to blastocyst.
Methods: Aspirated from ovine ovaries, morphologically normal cumulus-oocyte complexes (COCs) were matured in media supplemented with or without 5 µM γ-oryzanol. Matured oocytes were divided into two parts: one evaluated for their nuclear maturation, the level of GSH and ROS, mitochondrial membrane potential (MMP) and the pattern of transcription in oocytes and respective cumulus cells (CCs), and another subjected to fertilisation and culture to assess the development of oocytes to the blastocyst.
Results: γ-Oryzanol improved the proportion of cleaved embryos and total blastocysts in the treated group, which was linked to improved MMP, higher levels of intracellular GSH and lower levels of ROS. A lower proportion of MI and GVBD was recorded for treated oocytes in comparison with control, although the proportion of MII oocytes was not different between groups. The treated oocytes and CCs showed downregulation of genes related to apoptosis (BAX and CASP-9) and upregulation of genes related to antioxidative status (NRF2, CAT and SOD). In conclusion, our results demonstrated the improved developmental outcome of supplemented oocytes so that the antioxidant response and higher enzymatic activity were maintained, and the generation of ROS was turned off; therefore, a novel alternative for counteracting oxidative stress in ovine oocytes undergoing maturation was offered by γ-oryzanol through an antioxidative pathway.
期刊介绍:
Veterinary Medicine and Science is the peer-reviewed journal for rapid dissemination of research in all areas of veterinary medicine and science. The journal aims to serve the research community by providing a vehicle for authors wishing to publish interesting and high quality work in both fundamental and clinical veterinary medicine and science.
Veterinary Medicine and Science publishes original research articles, systematic reviews, meta-analyses, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented in the paper.
We aim to be a truly global forum for high-quality research in veterinary medicine and science, and believe that the best research should be published and made widely accessible as quickly as possible. Veterinary Medicine and Science publishes papers submitted directly to the journal and those referred from a select group of prestigious journals published by Wiley-Blackwell.
Veterinary Medicine and Science is a Wiley Open Access journal, one of a new series of peer-reviewed titles publishing quality research with speed and efficiency. For further information visit the Wiley Open Access website.