Shaohan Tian, Xue Jiang, Weiren Wang, Zhihua Jing, Chi Zhang, Cheng Zhang, Turab Lookman, Yanjing Su
{"title":"Steel design based on a large language model","authors":"Shaohan Tian, Xue Jiang, Weiren Wang, Zhihua Jing, Chi Zhang, Cheng Zhang, Turab Lookman, Yanjing Su","doi":"10.1016/j.actamat.2024.120663","DOIUrl":null,"url":null,"abstract":"The success of artificial intelligence (AI) in materials research heavily relies on the integrity of structured data and the construction of precise descriptors. In this study, we present an end-to-end pipeline from materials text to properties for steels based on a large language model. The objective is to enable quantitative predictions of properties with high-accuracy and explore new steels. The pipeline includes a materials language encoder, named SteelBERT, and a multimodal deep learning framework that maps the composition and text sequence of complex fabrication processes to mechanical properties. We demonstrate high accuracy on mechanical properties, including yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) by predicting determination coefficients (R<sup>2</sup>) reaching 78.17% (±3.40%), 82.56% (±1.96%), and 81.44% (±2.98%) respectively. Further, through an additional fine-tuning strategy for the design of specific steels with small datasets, we show how the performance can be refined. With only 64 experimental samples of 15Cr austenitic stainless steels, we obtain an optimized model with R<sup>2</sup> of 89.85% (±6.17%), 88.34% (±5.95%) and 87.24% (±5.15%) for YS, UTS and EL, that requires the user to input composition and text sequence for processing and which outputs mechanical properties. The model efficiently optimizes the text sequence for the fabrication process by suggesting a secondary round of cold rolling and tempering to yield an exceptional YS of 960 MPa, UTS of 1138 MPa, and EL of 32.5%, exceeding those of reported 15Cr austenitic stainless steels.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"30 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120663","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The success of artificial intelligence (AI) in materials research heavily relies on the integrity of structured data and the construction of precise descriptors. In this study, we present an end-to-end pipeline from materials text to properties for steels based on a large language model. The objective is to enable quantitative predictions of properties with high-accuracy and explore new steels. The pipeline includes a materials language encoder, named SteelBERT, and a multimodal deep learning framework that maps the composition and text sequence of complex fabrication processes to mechanical properties. We demonstrate high accuracy on mechanical properties, including yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) by predicting determination coefficients (R2) reaching 78.17% (±3.40%), 82.56% (±1.96%), and 81.44% (±2.98%) respectively. Further, through an additional fine-tuning strategy for the design of specific steels with small datasets, we show how the performance can be refined. With only 64 experimental samples of 15Cr austenitic stainless steels, we obtain an optimized model with R2 of 89.85% (±6.17%), 88.34% (±5.95%) and 87.24% (±5.15%) for YS, UTS and EL, that requires the user to input composition and text sequence for processing and which outputs mechanical properties. The model efficiently optimizes the text sequence for the fabrication process by suggesting a secondary round of cold rolling and tempering to yield an exceptional YS of 960 MPa, UTS of 1138 MPa, and EL of 32.5%, exceeding those of reported 15Cr austenitic stainless steels.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.