Highly durable porous NiO-derived electrodes with superior bifunctional activity for scalable alkaline water electrolysis

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2024-12-18 DOI:10.1016/j.cej.2024.158738
Shukai Diao, Tianwen Wang, Wen Kuang, Su Yan, Xiaotian Zhang, Mingxuan Chen, Ying Liu, Aidong Tan, Tianrang Yang, Jianguo Liu
{"title":"Highly durable porous NiO-derived electrodes with superior bifunctional activity for scalable alkaline water electrolysis","authors":"Shukai Diao, Tianwen Wang, Wen Kuang, Su Yan, Xiaotian Zhang, Mingxuan Chen, Ying Liu, Aidong Tan, Tianrang Yang, Jianguo Liu","doi":"10.1016/j.cej.2024.158738","DOIUrl":null,"url":null,"abstract":"Alkaline water electrolysis (AWE) is a leading “green hydrogen” production technology. Industrial electrodes use alkaline leaching to remove Al from NiAl alloy, creating pores and increasing specific surface area (SSA) but still suffer from poor electrode performance. This study presents a method for fabricating an efficient bifunctional electrode. The process involves creating a porous Ni layer with high SSA on nickel mesh (NM) by reducing NiO, which facilitates the formation of Ni(OH)<sub>2</sub> nanosheets. The resulting Ni/Ni(OH)<sub>2</sub>@NM electrode features a hydrophilic, gas-repellent and highly electrochemically active surface. It achieves low overpotentials for hydrogen and oxygen evolution reactions (164 mV and 337 mV at 100 mA/cm<sup>2</sup>, respectively). The electrolyzer using Ni/Ni(OH)<sub>2</sub>@NM electrodes only requires 1.695 V to achieve 300 mA/cm<sup>2</sup> at 80 °C after a 2000 h durability test. The electrode also demonstrates excellent stability under frequent start-stop cycles, making it well-suited for integration with intermittent renewable energy sources.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"49 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.158738","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Alkaline water electrolysis (AWE) is a leading “green hydrogen” production technology. Industrial electrodes use alkaline leaching to remove Al from NiAl alloy, creating pores and increasing specific surface area (SSA) but still suffer from poor electrode performance. This study presents a method for fabricating an efficient bifunctional electrode. The process involves creating a porous Ni layer with high SSA on nickel mesh (NM) by reducing NiO, which facilitates the formation of Ni(OH)2 nanosheets. The resulting Ni/Ni(OH)2@NM electrode features a hydrophilic, gas-repellent and highly electrochemically active surface. It achieves low overpotentials for hydrogen and oxygen evolution reactions (164 mV and 337 mV at 100 mA/cm2, respectively). The electrolyzer using Ni/Ni(OH)2@NM electrodes only requires 1.695 V to achieve 300 mA/cm2 at 80 °C after a 2000 h durability test. The electrode also demonstrates excellent stability under frequent start-stop cycles, making it well-suited for integration with intermittent renewable energy sources.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有卓越双功能活性的高耐久性多孔氧化镍电极,可用于可扩展的碱性水电解
碱性水电解(AWE)是一种领先的 "绿色制氢 "技术。工业电极使用碱浸法去除镍铝合金中的铝,形成孔隙并增加比表面积(SSA),但电极性能仍然较差。本研究提出了一种制造高效双功能电极的方法。该工艺包括通过还原氧化镍在镍网(NM)上形成具有高比表面积的多孔镍层,从而促进镍(OH)2 纳米片的形成。由此产生的 Ni/Ni(OH)2@NM 电极具有亲水性、斥气性和高电化学活性表面。它的氢气和氧气进化反应过电位很低(100 mA/cm2 时分别为 164 mV 和 337 mV)。使用 Ni/Ni(OH)2@NM 电极的电解槽经过 2000 小时的耐久性测试后,在 80 °C 条件下仅需 1.695 V 即可达到 300 mA/cm2。该电极在频繁的启动-停止循环中也表现出卓越的稳定性,因此非常适合与间歇性可再生能源集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
KOH
阿拉丁
water
阿拉丁
isopropanol
阿拉丁
isopropanol
阿拉丁
KOH
Sigma
Poly(ethyleneimine) solution
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
Phosphorus doping-induced electron transfer promotes cobalt-iron biochar activation of peracetic acid: Selective reactive substance generation for pesticide degradation Orientational dipole interaction mediated by crystallites and defects in biomass derived carbon materials of heterogeneous catalytic ozonation process Double-shell structured mixed-spinel oxides for highly efficient oxygen evolution Dual nonradical pathways in enhanced PDS activation by Fe@BC-S: Fe7S8 mediated the relationship between 1O2 and electron transfer Tunable effect of divalent cations on tendril patterning during swarming motility of Pseudomonas aeruginosa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1