Hydrogel based Flexible wearable sweat sensor for SERS-AI monitoring treatment effect of Lung Cancer

IF 8 1区 化学 Q1 CHEMISTRY, ANALYTICAL Sensors and Actuators B: Chemical Pub Date : 2024-12-18 DOI:10.1016/j.snb.2024.137155
Zhaoxian Chen, Shihong Liu, Wenrou Yu, Li Wang, Fengxue Lv, Liejun Yang, Huiqing Yu, Haiyang Shi, Yingzhou Huang
{"title":"Hydrogel based Flexible wearable sweat sensor for SERS-AI monitoring treatment effect of Lung Cancer","authors":"Zhaoxian Chen, Shihong Liu, Wenrou Yu, Li Wang, Fengxue Lv, Liejun Yang, Huiqing Yu, Haiyang Shi, Yingzhou Huang","doi":"10.1016/j.snb.2024.137155","DOIUrl":null,"url":null,"abstract":"Comfortable treatment of malignant tumors is the clinical orientation of cancer therapy at present, which puts forward a high demand for non-invasive, portable and high-frequency monitoring status of tumor in the treatment. Unlike traditional blood and X-ray technique, here we have developed hydrogel-based wearable sweat sensors, equipped with multiple molecular receptors for surface enhanced Raman spectroscopy (SERS) monitoring treatment effects of lung cancer. The SERS technique was utilized in combination with multiple artificial intelligence (AI) algorithms (LGB GNB, LDA, RF, and SVM) to develop a novel and precise diagnostic model for monitoring the treatment effect. Based on 12617 SERS spectras from clinical patients, the results successfully diagnosed three treatment effects (progressive disease, partial response, and no change) with an accuracy of 89.7%. Benefiting from data mining in AI algorithms, key Raman spectra features in clinical spectra are identified to explore characteristic biomarkers of lung cancer associated with various comorbidities. The clinical data suggest that carbonyl biomarkers in sweat might be crucial for understanding complications such as diabetes and hypertension. Our results not only offer a novel and comfortable monitoring technique but also enable personalized treatment of lung cancer with complications, presenting significant potential for clinical application.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"12 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2024.137155","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Comfortable treatment of malignant tumors is the clinical orientation of cancer therapy at present, which puts forward a high demand for non-invasive, portable and high-frequency monitoring status of tumor in the treatment. Unlike traditional blood and X-ray technique, here we have developed hydrogel-based wearable sweat sensors, equipped with multiple molecular receptors for surface enhanced Raman spectroscopy (SERS) monitoring treatment effects of lung cancer. The SERS technique was utilized in combination with multiple artificial intelligence (AI) algorithms (LGB GNB, LDA, RF, and SVM) to develop a novel and precise diagnostic model for monitoring the treatment effect. Based on 12617 SERS spectras from clinical patients, the results successfully diagnosed three treatment effects (progressive disease, partial response, and no change) with an accuracy of 89.7%. Benefiting from data mining in AI algorithms, key Raman spectra features in clinical spectra are identified to explore characteristic biomarkers of lung cancer associated with various comorbidities. The clinical data suggest that carbonyl biomarkers in sweat might be crucial for understanding complications such as diabetes and hypertension. Our results not only offer a novel and comfortable monitoring technique but also enable personalized treatment of lung cancer with complications, presenting significant potential for clinical application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于水凝胶的柔性可穿戴汗液传感器用于 SERS-AI 监测肺癌治疗效果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors and Actuators B: Chemical
Sensors and Actuators B: Chemical 工程技术-电化学
CiteScore
14.60
自引率
11.90%
发文量
1776
审稿时长
3.2 months
期刊介绍: Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.
期刊最新文献
Efficacy evaluation of edaravone by imaging of •OH in cerebral ischemia-reperfusion injury with a novel fluorescent probe A MXene-Au Nanosheets-based Fluorescent-SERS Dual-Mode Biosensor Integrated with CRISPR/Cas12a System for Endotoxin Detection Dual-site peroxidase-mimic graphdiyne-based colorimetric sensor arrays with machine learning for screening of multiple antibiotics Dual-gas sensor for ultra-close overlapping spectra based on second harmonic peak shift Non-tandem enzymatic modules-encapsulated metal-organic framework cubes with mutual-validated operation for dual-modal competitive immunoassay of antibiotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1