Juthi Pal, Pousali Samanta, Afruja Khan, Rishabh Maity, Amirul Islam Mallick, Dibakar Dhara
{"title":"Bicontinuous Nanoparticles from Spontaneous Self-Assembly of Block Copolymer Prodrug in Aqueous Medium for Potential Cancer Therapy","authors":"Juthi Pal, Pousali Samanta, Afruja Khan, Rishabh Maity, Amirul Islam Mallick, Dibakar Dhara","doi":"10.1021/acsmacrolett.4c00590","DOIUrl":null,"url":null,"abstract":"Despite having several advantages, bicontinuously structured polymeric nanoparticles (BSPNPs) are far less explored in the field of controlled drug delivery owing to the requirement of complex precursor copolymers and the associated multistep synthetic procedures. In this work, we report the synthesis of a redox-sensitive diblock copolymer (P1), which was subsequently utilized to prepare doxorubicin (DOX) containing a pH-labile prodrug (P2). P1 and P2 spontaneously self-assembled in aqueous media above their critical aggregation concentration, forming micellar nanoparticles with rare bicontinuous morphology that promotes loading of both hydrophobic and hydrophilic cargoes in different compartments. To the best of our knowledge, the formation of BSPNPs through direct self-assembly in aqueous media has not yet been reported. <i>In vitro</i> cellular studies asserted the higher safety profile of the nanoparticles against noncancerous cells (HEK293T) than free DOX, whereas they displayed higher drug-induced cytotoxicity against cancer cells (MCF-7) in comparison to free DOX, establishing them as promising cancer drug delivery systems.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"89 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Despite having several advantages, bicontinuously structured polymeric nanoparticles (BSPNPs) are far less explored in the field of controlled drug delivery owing to the requirement of complex precursor copolymers and the associated multistep synthetic procedures. In this work, we report the synthesis of a redox-sensitive diblock copolymer (P1), which was subsequently utilized to prepare doxorubicin (DOX) containing a pH-labile prodrug (P2). P1 and P2 spontaneously self-assembled in aqueous media above their critical aggregation concentration, forming micellar nanoparticles with rare bicontinuous morphology that promotes loading of both hydrophobic and hydrophilic cargoes in different compartments. To the best of our knowledge, the formation of BSPNPs through direct self-assembly in aqueous media has not yet been reported. In vitro cellular studies asserted the higher safety profile of the nanoparticles against noncancerous cells (HEK293T) than free DOX, whereas they displayed higher drug-induced cytotoxicity against cancer cells (MCF-7) in comparison to free DOX, establishing them as promising cancer drug delivery systems.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.