Zhongyao Zhang, Feiting Zhang, Zhongxin Song, Lei Zhang
{"title":"Oxygen Reduction Reaction on Pyridinic Nitrogen-Functionalized Carbon: Active Site Quantification and Effects of Lewis Basicity","authors":"Zhongyao Zhang, Feiting Zhang, Zhongxin Song, Lei Zhang","doi":"10.1021/acscatal.4c05289","DOIUrl":null,"url":null,"abstract":"Metal-free carbon materials functionalized with pyridinic nitrogen groups exhibit promising electrocatalytic activity for the oxygen reduction reaction (ORR). However, not all pyridinic nitrogen groups are equally active for the ORR, which remains ambiguous and requires rigorous quantification and differentiation by their basicity. Here, we introduce the potentiometric titration method for identifying and quantifying nitrogen-containing groups on carbon materials by their Lewis basicity and reactivity in characteristic tests. Various carbon materials are functionalized with nitrogen heteroatoms. Potentiometric titration, X-ray photoelectron spectroscopy (XPS), and elemental analysis suggest that a significant amount of pyridinic nitrogen groups are buried within the bulk structures and cannot be accessed by protons and oxygen molecules. Besides, pyridinic nitrogen functions located adjacent to other nitrogen atoms exhibit weaker basicity due to strong inductive or resonance effects, resulting in a negligible contribution to the ORR activity. ORR measurements under alkaline conditions suggest that the titratable pyridinic nitrogen groups are essential for the active site (or site pair), and kinetic current density is directly proportional to the density of titratable pyridinic nitrogen groups. Furthermore, the turnover frequency for the ORR increases with the Lewis basicity of the pyridinic nitrogen groups for all investigated carbon materials in alkaline and acidic conditions. Density functional theory (DFT) calculations suggest that the ORR occurs on the carbon atoms adjacent to pyridinic nitrogen groups. Pyridinic nitrogen with a higher Lewis basicity can affect adjacent carbon atoms more efficiently, which stabilizes the key intermediates for the ORR and decreases the activation barrier. This work provides an informative and convenient way for characterizing nitrogen-containing groups on carbon materials, especially in quantifying the active pyridinic nitrogen sites for the ORR.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"64 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c05289","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-free carbon materials functionalized with pyridinic nitrogen groups exhibit promising electrocatalytic activity for the oxygen reduction reaction (ORR). However, not all pyridinic nitrogen groups are equally active for the ORR, which remains ambiguous and requires rigorous quantification and differentiation by their basicity. Here, we introduce the potentiometric titration method for identifying and quantifying nitrogen-containing groups on carbon materials by their Lewis basicity and reactivity in characteristic tests. Various carbon materials are functionalized with nitrogen heteroatoms. Potentiometric titration, X-ray photoelectron spectroscopy (XPS), and elemental analysis suggest that a significant amount of pyridinic nitrogen groups are buried within the bulk structures and cannot be accessed by protons and oxygen molecules. Besides, pyridinic nitrogen functions located adjacent to other nitrogen atoms exhibit weaker basicity due to strong inductive or resonance effects, resulting in a negligible contribution to the ORR activity. ORR measurements under alkaline conditions suggest that the titratable pyridinic nitrogen groups are essential for the active site (or site pair), and kinetic current density is directly proportional to the density of titratable pyridinic nitrogen groups. Furthermore, the turnover frequency for the ORR increases with the Lewis basicity of the pyridinic nitrogen groups for all investigated carbon materials in alkaline and acidic conditions. Density functional theory (DFT) calculations suggest that the ORR occurs on the carbon atoms adjacent to pyridinic nitrogen groups. Pyridinic nitrogen with a higher Lewis basicity can affect adjacent carbon atoms more efficiently, which stabilizes the key intermediates for the ORR and decreases the activation barrier. This work provides an informative and convenient way for characterizing nitrogen-containing groups on carbon materials, especially in quantifying the active pyridinic nitrogen sites for the ORR.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.