Eugenie Pranada, Bright Ngozichukwu, Ray Yoo, Denis Johnson, Mark A. Barteau, Ahmed Abdel-Wahab, Abdoulaye Djire
{"title":"Hydrogen Evolution and Oxygen Reduction on OH/F-Terminated Titanium Nitride MXene Reveal the Role of the Surface Termination Group in Electrocatalysis","authors":"Eugenie Pranada, Bright Ngozichukwu, Ray Yoo, Denis Johnson, Mark A. Barteau, Ahmed Abdel-Wahab, Abdoulaye Djire","doi":"10.1021/acscatal.4c05247","DOIUrl":null,"url":null,"abstract":"MXenes, a class of two-dimensional (2D) carbides and/or nitrides, are increasingly utilized in various electrochemical reduction reactions owing to their electronic conductivity, specific surface area, and tunable surface chemistry. Previous studies have indicated that the performance of MXenes in catalyzing the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is influenced by their surface termination groups. However, our understanding of how these groups affect electrocatalytic performance remains limited, especially for nitride MXenes. This work investigates the effects of termination group modification on the HER and ORR activity of Ti<sub>4</sub>N<sub>3</sub> nitride MXene in alkaline media. Ti<sub>4</sub>N<sub>3</sub> MXene was synthesized via oxygen-assisted molten salt fluoride etching and delaminated using different solvents, including tetramethylammonium hydroxide (TMAOH), dimethyl sulfoxide (DMSO), water (H<sub>2</sub>O), and tetrabutylammonium hydroxide (TBAOH). Characterization through FTIR, EDS, and XPS revealed that all delaminated MXenes have hydroxyl and fluoro terminations, with the former being the predominant group. Among the samples, Ti<sub>4</sub>N<sub>3</sub> delaminated with TBAOH (referred to as Ti<sub>4</sub>N<sub>3</sub>-TBAOH) had the highest −OH surface coverage. While the initial HER activity was comparable for all the nitride samples, we observed different onset and overpotentials after activation through chronopotentiometry, likely due to the removal of the passivation layer and the consequent increase in the −OH surface coverage. Ti<sub>4</sub>N<sub>3</sub>-TMAOH demonstrated the highest improvement, with a nearly 300-mV decrease in the overpotential at −10 mA/cm<sup>2</sup>. For the ORR activity, all OH-terminated Ti<sub>4</sub>N<sub>3</sub> MXenes exhibited very similar onset and half-wave potentials despite having different surface coverages. Overall, our results show that while varying the delamination agent alters the coverage of OH/F functional groups, it does not significantly affect the overall catalytic performance, which offers flexibility when preparing nitride MXenes for these applications. These insights provide an experimental basis to further exploration of surface modification of nitride MXenes for fuel cell and water splitting applications.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"203 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c05247","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
MXenes, a class of two-dimensional (2D) carbides and/or nitrides, are increasingly utilized in various electrochemical reduction reactions owing to their electronic conductivity, specific surface area, and tunable surface chemistry. Previous studies have indicated that the performance of MXenes in catalyzing the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is influenced by their surface termination groups. However, our understanding of how these groups affect electrocatalytic performance remains limited, especially for nitride MXenes. This work investigates the effects of termination group modification on the HER and ORR activity of Ti4N3 nitride MXene in alkaline media. Ti4N3 MXene was synthesized via oxygen-assisted molten salt fluoride etching and delaminated using different solvents, including tetramethylammonium hydroxide (TMAOH), dimethyl sulfoxide (DMSO), water (H2O), and tetrabutylammonium hydroxide (TBAOH). Characterization through FTIR, EDS, and XPS revealed that all delaminated MXenes have hydroxyl and fluoro terminations, with the former being the predominant group. Among the samples, Ti4N3 delaminated with TBAOH (referred to as Ti4N3-TBAOH) had the highest −OH surface coverage. While the initial HER activity was comparable for all the nitride samples, we observed different onset and overpotentials after activation through chronopotentiometry, likely due to the removal of the passivation layer and the consequent increase in the −OH surface coverage. Ti4N3-TMAOH demonstrated the highest improvement, with a nearly 300-mV decrease in the overpotential at −10 mA/cm2. For the ORR activity, all OH-terminated Ti4N3 MXenes exhibited very similar onset and half-wave potentials despite having different surface coverages. Overall, our results show that while varying the delamination agent alters the coverage of OH/F functional groups, it does not significantly affect the overall catalytic performance, which offers flexibility when preparing nitride MXenes for these applications. These insights provide an experimental basis to further exploration of surface modification of nitride MXenes for fuel cell and water splitting applications.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.