Samaneh Ghaedi, Hamid Rajabi, Mojgan Hadi Mosleh, Majid Sedighi
{"title":"MOF biochar composites for environmental protection and pollution control","authors":"Samaneh Ghaedi, Hamid Rajabi, Mojgan Hadi Mosleh, Majid Sedighi","doi":"10.1016/j.biortech.2024.131982","DOIUrl":null,"url":null,"abstract":"Research studies on Metal Organic Frameworks (MOF) based composites and their potential applications in environmental engineering and pollution control have recently emerged. An attractive material to form MOF composites is biochar (BC); a low-cost, highly porous carbonaceous by-product of biomass pyrolysis. This paper presents a critical review on MOF-biochar composites, focusing on fabrication, characterisation, modification, and applications in environmental protection and pollution control. The adsorption mechanisms and influential parameters are systematically examined to develop an insight into interactions between MOF and biochar in remedial process. The adsorption capacity of composites is generally doubled compared to the standalone biochar, while MOFs maintain their crystallinity, even over multiple regeneration cycles, indicating the composites’ long-term applicability and sustainability. These findings highlight the potential of MOF-biochar composites for environmental applications and identify key areas for further research to enhance their sustainability in environmental protection and green energy.","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"14 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131982","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Research studies on Metal Organic Frameworks (MOF) based composites and their potential applications in environmental engineering and pollution control have recently emerged. An attractive material to form MOF composites is biochar (BC); a low-cost, highly porous carbonaceous by-product of biomass pyrolysis. This paper presents a critical review on MOF-biochar composites, focusing on fabrication, characterisation, modification, and applications in environmental protection and pollution control. The adsorption mechanisms and influential parameters are systematically examined to develop an insight into interactions between MOF and biochar in remedial process. The adsorption capacity of composites is generally doubled compared to the standalone biochar, while MOFs maintain their crystallinity, even over multiple regeneration cycles, indicating the composites’ long-term applicability and sustainability. These findings highlight the potential of MOF-biochar composites for environmental applications and identify key areas for further research to enhance their sustainability in environmental protection and green energy.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.