Differential lithospheric evolution during craton destruction: Insights from Mesozoic mafic magmatic suites with transitional features in the North China Craton

IF 7.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Gondwana Research Pub Date : 2024-12-05 DOI:10.1016/j.gr.2024.11.010
Fei Xue, M. Santosh, Sung Won Kim
{"title":"Differential lithospheric evolution during craton destruction: Insights from Mesozoic mafic magmatic suites with transitional features in the North China Craton","authors":"Fei Xue, M. Santosh, Sung Won Kim","doi":"10.1016/j.gr.2024.11.010","DOIUrl":null,"url":null,"abstract":"During the Mesozoic, the North China Craton (NCC) especially the eastern part underwent significant destruction of its cratonic roots. During ∼125–120 Ma, the source of magmatism shifted from an ancient enriched lithospheric mantle to a juvenile depleted asthenospheric mantle. While this geochemical change is clear in the eastern NCC, it is unclear whether a similar shift occurred in the central NCC or if the lithospheric evolution differed across the craton. Mafic magmatic suites are key to understanding the evolution of cratonic lithospheric mantle, especially by analyzing their geochemical and isotopic transitions. This study examines the Mesozoic Laiyuan ultramafic–mafic intrusions in central NCC, classified into gabbro, gabbroic diorite, and cumulate suites (pyroxenite and hornblendite). Zircon U-Pb dating indicates gabbroic rocks formed between 136–124 Ma and cumulated between 130–129 Ma. These rocks also display similar isotopic signatures, including zircon Hf isotopes ranging from −24.9 to −7.8 and −28.3 to −15.9, (<ce:sup loc=\"post\">87</ce:sup>Sr/<ce:sup loc=\"post\">86</ce:sup>Sr)<ce:sup loc=\"post\">i</ce:sup> ratios from 0.705945 to 0.706335 and 0.705692 to 0.706038, and ε<ce:inf loc=\"post\">Nd</ce:inf>(t) values from −16.1 to −12.8 and −15.8 to −12.5, respectively. Geochemical and isotopic data suggest an enriched lithospheric mantle source influenced by subduction-related metasomatism with minimal crustal contamination. The gabbroic and ultramafic layers represent residual melts and cumulates from a common source, respectively. Geochemical data reveal a transition in the mantle source from ultramafic-mafic intrusions (∼140–124 Ma) to dolerite (∼125–117 Ma) and lamprophyre (∼115–110 Ma), indicating lithospheric thinning and asthenosphere upwelling. This gradual transition in the central NCC contrasts with the rapid change in the eastern NCC, reflecting different lithospheric evolution processes: thermo-mechanical erosion in the central NCC and lithospheric delamination in the eastern NCC. These findings highlight diverse mechanisms of cratonic destruction across the NCC.","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"1 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gr.2024.11.010","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

During the Mesozoic, the North China Craton (NCC) especially the eastern part underwent significant destruction of its cratonic roots. During ∼125–120 Ma, the source of magmatism shifted from an ancient enriched lithospheric mantle to a juvenile depleted asthenospheric mantle. While this geochemical change is clear in the eastern NCC, it is unclear whether a similar shift occurred in the central NCC or if the lithospheric evolution differed across the craton. Mafic magmatic suites are key to understanding the evolution of cratonic lithospheric mantle, especially by analyzing their geochemical and isotopic transitions. This study examines the Mesozoic Laiyuan ultramafic–mafic intrusions in central NCC, classified into gabbro, gabbroic diorite, and cumulate suites (pyroxenite and hornblendite). Zircon U-Pb dating indicates gabbroic rocks formed between 136–124 Ma and cumulated between 130–129 Ma. These rocks also display similar isotopic signatures, including zircon Hf isotopes ranging from −24.9 to −7.8 and −28.3 to −15.9, (87Sr/86Sr)i ratios from 0.705945 to 0.706335 and 0.705692 to 0.706038, and εNd(t) values from −16.1 to −12.8 and −15.8 to −12.5, respectively. Geochemical and isotopic data suggest an enriched lithospheric mantle source influenced by subduction-related metasomatism with minimal crustal contamination. The gabbroic and ultramafic layers represent residual melts and cumulates from a common source, respectively. Geochemical data reveal a transition in the mantle source from ultramafic-mafic intrusions (∼140–124 Ma) to dolerite (∼125–117 Ma) and lamprophyre (∼115–110 Ma), indicating lithospheric thinning and asthenosphere upwelling. This gradual transition in the central NCC contrasts with the rapid change in the eastern NCC, reflecting different lithospheric evolution processes: thermo-mechanical erosion in the central NCC and lithospheric delamination in the eastern NCC. These findings highlight diverse mechanisms of cratonic destruction across the NCC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Gondwana Research
Gondwana Research 地学-地球科学综合
CiteScore
12.90
自引率
6.60%
发文量
298
审稿时长
65 days
期刊介绍: Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.
期刊最新文献
Palynostratigraphic reassessment of the Permian Wolfang Basin (Queensland, Australia) − implications for climate and timing of coal formation The Triassic magmatism in southwestern Gondwana: An example of arc batholith construction in a retreating margin Differential lithospheric evolution during craton destruction: Insights from Mesozoic mafic magmatic suites with transitional features in the North China Craton Global progress towards the Coal: Tracking coal reserves, coal prices, electricity from coal, carbon emissions and coal phase-out The congruence of dual gaps in economic growth on regional sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1