Optoelectronic synthesizer for tunable microwave generation with ultralow phase noise

IF 40.9 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Nature Electronics Pub Date : 2024-12-18 DOI:10.1038/s41928-024-01296-9
{"title":"Optoelectronic synthesizer for tunable microwave generation with ultralow phase noise","authors":"","doi":"10.1038/s41928-024-01296-9","DOIUrl":null,"url":null,"abstract":"A hybrid optoelectronic synthesizer is developed that combines simplified optical frequency division with direct digital synthesis to generate tunable, low-phase-noise microwaves across the X-band. This approach also achieves high frequency stability while reducing the size, weight and power demands, paving the way for chip-scale photonic microwave sources.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 12","pages":"1084-1085"},"PeriodicalIF":40.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01296-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A hybrid optoelectronic synthesizer is developed that combines simplified optical frequency division with direct digital synthesis to generate tunable, low-phase-noise microwaves across the X-band. This approach also achieves high frequency stability while reducing the size, weight and power demands, paving the way for chip-scale photonic microwave sources.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于超低相位噪声可调谐微波产生的光电合成器
我们开发了一种混合光电合成器,它将简化的光学分频与直接数字合成相结合,可产生跨 X 波段的可调谐低相噪微波。这种方法还实现了高频率稳定性,同时降低了尺寸、重量和功率要求,为芯片级光子微波源铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
期刊最新文献
High-power millimetre-wave switches on silicon using displacement fields and tunnelling currents A neuromorphic imager based on a cascaded optoelectronic synapse A scalable superconducting nanowire memory array with row–column addressing Body sensor networks based on flexible topological clothing Fatigue-resistant metal-film-based flexible conductors with a coherent gradient nanolayered architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1