Iron isotope fractionation in highly evolved magmas results from ilmenite crystallization

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geochimica et Cosmochimica Acta Pub Date : 2024-11-30 DOI:10.1016/j.gca.2024.11.029
Fengli Shao, Yaoling Niu, Haiquan Wei, Yu Zhang, Guodong Wang
{"title":"Iron isotope fractionation in highly evolved magmas results from ilmenite crystallization","authors":"Fengli Shao, Yaoling Niu, Haiquan Wei, Yu Zhang, Guodong Wang","doi":"10.1016/j.gca.2024.11.029","DOIUrl":null,"url":null,"abstract":"Globally, granites and rhyolites with SiO<ce:inf loc=\"post\">2</ce:inf> &gt; 70 wt% show large Fe isotope variation (δ<ce:sup loc=\"post\">56</ce:sup>Fe = −0.05 to +0.65 ‰) relative to less silicic igneous rocks in δ<ce:sup loc=\"post\">56</ce:sup>Fe vs. SiO<ce:inf loc=\"post\">2</ce:inf> space. The upper bound of the data tends to show δ<ce:sup loc=\"post\">56</ce:sup>Fe increase with increasing SiO<ce:inf loc=\"post\">2</ce:inf>. Granitic magma differentiation can be invoked to explain magma compositional variation, including Fe isotope variation, but clearly cannot explain the highly varied δ<ce:sup loc=\"post\">56</ce:sup>Fe values. The latter may result from magma differentiation of varying liquidus phases, magma mixing, assimilation and magma source compositional variation. To decipher how each of these and altogether explain the large δ<ce:sup loc=\"post\">56</ce:sup>Fe variation requires rigorous studies of varying well characterized sample suites. This paper is not to solve all these issues but demonstrates clearly using three sample suites with well-defined liquid lines of descent from alkaline basalts to peralkaline rhyolites to show that the δ<ce:sup loc=\"post\">56</ce:sup>Fe increases with continued magma differentiation (increasing SiO<ce:inf loc=\"post\">2</ce:inf>, SiO<ce:inf loc=\"post\">2</ce:inf>/MgO and decreasing MgO). The rapid δ<ce:sup loc=\"post\">56</ce:sup>Fe increase for samples with SiO<ce:inf loc=\"post\">2</ce:inf> &gt; 70 wt% results from ilmenite (vs. magnetite) fractionation. Among all the major liquidus phases, ilmenite has a distinctive affinity with light-Fe isotope, whose crystallization elevates δ<ce:sup loc=\"post\">56</ce:sup>Fe in the residual melts. This result demonstrates the affinity of isotopically heavy Fe with Fe<ce:sup loc=\"post\">3+</ce:sup> and the correlation of isotopically light Fe with Fe<ce:sup loc=\"post\">2+</ce:sup> because δ<ce:sup loc=\"post\">56</ce:sup>Fe values of ilmenite (TiFe<ce:sup loc=\"post\">2+</ce:sup>O<ce:inf loc=\"post\">3</ce:inf>) ≪ δ<ce:sup loc=\"post\">56</ce:sup>Fe values of magnetite (<mml:math altimg=\"si1.svg\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">F</mml:mi><mml:mi mathvariant=\"normal\">e</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:mi mathvariant=\"normal\">O</mml:mi><mml:mo>∙</mml:mo><mml:msubsup><mml:mrow><mml:mi mathvariant=\"normal\">F</mml:mi><mml:mi mathvariant=\"normal\">e</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msubsup><mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>). We can conclude that ilmenite solid solution is likely the major oxide liquidus phase at the late-stage felsic melt evolution for relatively dry magmas with low <ce:italic>f</ce:italic>O<ce:inf loc=\"post\">2</ce:inf> such as peralkaline rhyolites we study here and mid-ocean ridge basalts. We further predict that magnetite (vs. ilmenite) solid solution may be the important liquidus phase for wet magmas with high <ce:italic>f</ce:italic>O<ce:inf loc=\"post\">2</ce:inf> such as volcanic arc magmas, where crystallization of magnetite with high δ<ce:sup loc=\"post\">56</ce:sup>Fe will deplete the heavy Fe isotopes in the residual melts. It is thus possible that the large Fe isotope variation of global igneous rocks with SiO<ce:inf loc=\"post\">2</ce:inf> &gt; 70 wt% may result from varying parental magma compositions (varying water content and <ce:italic>f</ce:italic>O<ce:inf loc=\"post\">2</ce:inf>) plus bulk-rock modal mineralogy controls of granitic rocks. This work thus lays the foundation for testing this hypothesis through rigorous studies on ideal sample suites of global significance.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"52 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2024.11.029","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, granites and rhyolites with SiO2 > 70 wt% show large Fe isotope variation (δ56Fe = −0.05 to +0.65 ‰) relative to less silicic igneous rocks in δ56Fe vs. SiO2 space. The upper bound of the data tends to show δ56Fe increase with increasing SiO2. Granitic magma differentiation can be invoked to explain magma compositional variation, including Fe isotope variation, but clearly cannot explain the highly varied δ56Fe values. The latter may result from magma differentiation of varying liquidus phases, magma mixing, assimilation and magma source compositional variation. To decipher how each of these and altogether explain the large δ56Fe variation requires rigorous studies of varying well characterized sample suites. This paper is not to solve all these issues but demonstrates clearly using three sample suites with well-defined liquid lines of descent from alkaline basalts to peralkaline rhyolites to show that the δ56Fe increases with continued magma differentiation (increasing SiO2, SiO2/MgO and decreasing MgO). The rapid δ56Fe increase for samples with SiO2 > 70 wt% results from ilmenite (vs. magnetite) fractionation. Among all the major liquidus phases, ilmenite has a distinctive affinity with light-Fe isotope, whose crystallization elevates δ56Fe in the residual melts. This result demonstrates the affinity of isotopically heavy Fe with Fe3+ and the correlation of isotopically light Fe with Fe2+ because δ56Fe values of ilmenite (TiFe2+O3) ≪ δ56Fe values of magnetite (Fe2+OFe23+O3). We can conclude that ilmenite solid solution is likely the major oxide liquidus phase at the late-stage felsic melt evolution for relatively dry magmas with low fO2 such as peralkaline rhyolites we study here and mid-ocean ridge basalts. We further predict that magnetite (vs. ilmenite) solid solution may be the important liquidus phase for wet magmas with high fO2 such as volcanic arc magmas, where crystallization of magnetite with high δ56Fe will deplete the heavy Fe isotopes in the residual melts. It is thus possible that the large Fe isotope variation of global igneous rocks with SiO2 > 70 wt% may result from varying parental magma compositions (varying water content and fO2) plus bulk-rock modal mineralogy controls of granitic rocks. This work thus lays the foundation for testing this hypothesis through rigorous studies on ideal sample suites of global significance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钛铁矿结晶导致高度演化岩浆中的铁同位素分馏
在δ56Fe与SiO2的空间关系中,从全球来看,SiO2大于等于70 wt%的花岗岩和流纹岩的铁同位素变化(δ56Fe = -0.05 至 +0.65‰)相对于硅含量较低的火成岩较大。数据的上限倾向于显示δ56Fe随着SiO2的增加而增加。花岗岩岩浆分异可以用来解释岩浆成分的变化,包括铁同位素的变化,但显然不能解释δ56Fe值的巨大差异。后者可能是不同液相的岩浆分异、岩浆混合、同化和岩浆源成分变化造成的。要解释这些因素以及它们如何共同解释δ56Fe的巨大变化,需要对不同的特征良好的样品套件进行严格的研究。本文并不是要解决所有这些问题,而是利用从碱性玄武岩到围碱流纹岩的三组具有明确液态下降线的样品,清楚地表明δ56Fe会随着岩浆的持续分异(SiO2、SiO2/MgO的增加和MgO的减少)而增加。SiO2 > 70 wt%的样品δ56Fe的快速增加是钛铁矿(与磁铁矿)分馏的结果。在所有主要液相中,钛铁矿对轻铁同位素具有独特的亲和性,其结晶使残余熔体中的δ56Fe升高。由于钛铁矿(TiFe2+O3)的δ56Fe 值≪磁铁矿(Fe2+O∙Fe23+O3)的δ56Fe 值,这一结果表明了同位素重铁与 Fe3+ 的亲和性以及同位素轻铁与 Fe2+ 的相关性。我们可以得出结论,对于低 fO2 的相对干燥岩浆,如我们在此研究的围岩流纹岩和洋中脊玄武岩,钛铁矿固溶体可能是长岩熔体演化后期的主要氧化物液相。我们进一步预测,对于高 fO2 的湿岩浆(如火山弧岩浆),磁铁矿(相对于钛铁矿)固溶体可能是重要的液相,在这种岩浆中,具有高 δ56Fe 的磁铁矿的结晶将耗尽残余熔体中的重铁同位素。因此,SiO2 > 70 wt%的全球火成岩中铁同位素的巨大差异可能是由不同的母岩浆成分(不同的含水量和 fO2)以及花岗岩岩石的体岩模式矿物学控制造成的。因此,这项工作为通过对具有全球意义的理想样品套件进行严格研究来检验这一假设奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
期刊最新文献
The role of potassium in lode gold mineralization: insights from ab initio molecular dynamics and geochemical modeling Rhenium residency in molybdenite, compressional textures and relationship to polytypism The solubility of La hydroxide and stability of La3+ and La hydroxyl complexes at acidic to mildly acidic pH from 25 to 250 °C Coupling stable isotope analyses and X-ray absorption spectroscopy to investigate the molecular mechanism of zinc sorption by calcite Source composition or melting effect: New evidence from Archean komatiites concerning the origin of low highly siderophile element abundances in Earth’s mantle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1