Peter Mayrhofer, Markus R. Anneser, Kristina Schira, Carina A. Sommer, Ina Theobald, Martin Schlapschy, Stefan Achatz, Arne Skerra
{"title":"Protein purification with light via a genetically encoded azobenzene side chain","authors":"Peter Mayrhofer, Markus R. Anneser, Kristina Schira, Carina A. Sommer, Ina Theobald, Martin Schlapschy, Stefan Achatz, Arne Skerra","doi":"10.1038/s41467-024-55212-y","DOIUrl":null,"url":null,"abstract":"<p>Affinity chromatography is the method of choice for the rapid purification of proteins from cell extracts or culture supernatants. Here, we present the light-responsive Azo-tag, a short peptide comprising p-(phenylazo)-L-phenylalanine (Pap), whose side chain can be switched from its <i>trans</i>-ground state to the metastable <i>cis</i>-configuration by irradiation with mild UV light. Since only <i>trans</i>-Pap shows strong affinity to α-cyclodextrin (α-CD), a protein exhibiting the Azo-tag selectively binds to an α-CD chromatography matrix under daylight or in the dark but elutes quickly under physiological buffer flow when illuminating the column at 355 nm. We demonstrate the light-controlled single-step purification – termed Excitography – of diverse proteins, including enzymes and antibody fragments, without necessitating competing agents or harsh buffer conditions as normally applied. While affinity chromatography has so far been governed by chemical interactions, introducing control by electromagnetic radiation as a physical principle adds another dimension to this widely applied separation technique.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"6 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55212-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Affinity chromatography is the method of choice for the rapid purification of proteins from cell extracts or culture supernatants. Here, we present the light-responsive Azo-tag, a short peptide comprising p-(phenylazo)-L-phenylalanine (Pap), whose side chain can be switched from its trans-ground state to the metastable cis-configuration by irradiation with mild UV light. Since only trans-Pap shows strong affinity to α-cyclodextrin (α-CD), a protein exhibiting the Azo-tag selectively binds to an α-CD chromatography matrix under daylight or in the dark but elutes quickly under physiological buffer flow when illuminating the column at 355 nm. We demonstrate the light-controlled single-step purification – termed Excitography – of diverse proteins, including enzymes and antibody fragments, without necessitating competing agents or harsh buffer conditions as normally applied. While affinity chromatography has so far been governed by chemical interactions, introducing control by electromagnetic radiation as a physical principle adds another dimension to this widely applied separation technique.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.