Gluconolactone restores immune regulation and alleviates skin inflammation in lupus-prone mice and in patients with cutaneous lupus

IF 15.8 1区 医学 Q1 CELL BIOLOGY Science Translational Medicine Pub Date : 2025-02-19
Wei Li, Antonios G. A. Kolios, Wenliang Pan, Catalina Burbano, Kohei Karino, Theodoros Vichos, Morgane Humbel, Vasileios C. Kyttaris, Maria G. Tsokos, George C. Tsokos
{"title":"Gluconolactone restores immune regulation and alleviates skin inflammation in lupus-prone mice and in patients with cutaneous lupus","authors":"Wei Li,&nbsp;Antonios G. A. Kolios,&nbsp;Wenliang Pan,&nbsp;Catalina Burbano,&nbsp;Kohei Karino,&nbsp;Theodoros Vichos,&nbsp;Morgane Humbel,&nbsp;Vasileios C. Kyttaris,&nbsp;Maria G. Tsokos,&nbsp;George C. Tsokos","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Systemic lupus erythematosus (SLE) is characterized by dysfunctional regulatory T cells (T<sub>regs</sub>). We previously showed that protein phosphatase 2A (PP2A) plays a critical role in maintaining the suppressive function of T<sub>regs</sub>. Here, we analyzed phosphoproteomics and metabolomics data from PP2A–wild type and PP2A-deficient T<sub>regs</sub> and demonstrated that PP2A regulates T<sub>reg</sub> function through the pentose phosphate pathway (PPP). Furthermore, we proved that the PPP metabolite gluconolactone (GDL) enhances in vitro induced (i)T<sub>reg</sub> differentiation and function by promoting forkhead box protein 3 and phosphorylated signal transducer and activator of transcription 5 expression and inhibits T helper 17 (T<sub>H</sub>17) differentiation in murine cells. In short-term imiquimod-induced autoimmunity in mice, treatment with GDL alleviates inflammation by inhibiting T<sub>H</sub>17 cells. GDL promotes T<sub>regs</sub> function and alleviates skin lesions in MRL.<i>lpr</i> lupus-prone mice in vivo. It also promotes T<sub>regs</sub> differentiation and function in ex vivo experiments using cells from patients with SLE. Last, in patients suffering from cutaneous lupus erythematosus, topical application of a GDL-containing cream controlled skin inflammation and improved the clinical and histologic appearance of the skin lesions within 2 weeks. Together, we have identified GDL as a PPP metabolite and showed mechanistically that it restores immune regulation in vitro and in vivo by inducing T<sub>reg</sub> suppressive function and inhibiting T<sub>H</sub>17 cells. GDL should be considered as a treatment approach for inflammatory and autoimmune diseases.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 786","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scitranslmed.adp4447","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adp4447","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Systemic lupus erythematosus (SLE) is characterized by dysfunctional regulatory T cells (Tregs). We previously showed that protein phosphatase 2A (PP2A) plays a critical role in maintaining the suppressive function of Tregs. Here, we analyzed phosphoproteomics and metabolomics data from PP2A–wild type and PP2A-deficient Tregs and demonstrated that PP2A regulates Treg function through the pentose phosphate pathway (PPP). Furthermore, we proved that the PPP metabolite gluconolactone (GDL) enhances in vitro induced (i)Treg differentiation and function by promoting forkhead box protein 3 and phosphorylated signal transducer and activator of transcription 5 expression and inhibits T helper 17 (TH17) differentiation in murine cells. In short-term imiquimod-induced autoimmunity in mice, treatment with GDL alleviates inflammation by inhibiting TH17 cells. GDL promotes Tregs function and alleviates skin lesions in MRL.lpr lupus-prone mice in vivo. It also promotes Tregs differentiation and function in ex vivo experiments using cells from patients with SLE. Last, in patients suffering from cutaneous lupus erythematosus, topical application of a GDL-containing cream controlled skin inflammation and improved the clinical and histologic appearance of the skin lesions within 2 weeks. Together, we have identified GDL as a PPP metabolite and showed mechanistically that it restores immune regulation in vitro and in vivo by inducing Treg suppressive function and inhibiting TH17 cells. GDL should be considered as a treatment approach for inflammatory and autoimmune diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Translational Medicine
Science Translational Medicine CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
26.70
自引率
1.20%
发文量
309
审稿时长
1.7 months
期刊介绍: Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research. The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases. The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine. The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.
期刊最新文献
Gluconolactone restores immune regulation and alleviates skin inflammation in lupus-prone mice and in patients with cutaneous lupus Dysfunctional CD11c−CD21− extrafollicular memory B cells are enriched in the periphery and tumors of patients with cancer Antibodies targeting Crimean-Congo hemorrhagic fever virus GP38 limit vascular leak and viral spread β cell dedifferentiation, the underlying mechanism of diabetes in Wolfram syndrome Inhibiting mechanotransduction prevents scarring and yields regeneration in a large animal model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1