Engineering a robust Cas12i3 variant-mediated wheat genome editing system

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2024-12-17 DOI:10.1111/pbi.14544
Wenxue Wang, Lei Yan, Jingying Li, Chen Zhang, Yubing He, Shaoya Li, Lanqin Xia
{"title":"Engineering a robust Cas12i3 variant-mediated wheat genome editing system","authors":"Wenxue Wang, Lei Yan, Jingying Li, Chen Zhang, Yubing He, Shaoya Li, Lanqin Xia","doi":"10.1111/pbi.14544","DOIUrl":null,"url":null,"abstract":"Wheat (<i>Triticum aestivum</i> L., 2<i>n</i> = 6<i>x</i> = 42, AABBDD) is one of the most important food crops in the world. CRISPR/Cas12i3, which belongs to the type V-I Cas system, has attracted extensive attention recently due to its smaller protein size and its less-restricted canonical ‘TTN’ protospacer adjacent motif (PAM). However, due to its relatively lower editing efficacy in plants and the hexaploidy complex nature of wheat, Cas12i3/Cas12i3-5M-mediated genome editing in wheat has not been documented yet. Here, we report the engineering of a robust Cas12i3-5M-mediated genome editing system in wheat through the fusion of T5 exonuclease (T5E) in combination with an optimised crRNA expression strategy (Opt). We first showed that fusion of T5E, rather than ExoI, to Cas12i3-5M increased the gene editing efficiencies by up to 1.34-fold and 3.87-fold, compared to Cas12i3-5M and Cas12i3 in HEK293T cells, respectively. However, its editing efficiency remains low in wheat. We then optimised the crRNA expression strategy and demonstrated that Opt-T5E-Cas12i3-5M could enhance the editing efficiency by 1.20- to 1.33-fold and 4.05- to 7.95-fold in wheat stable lines compared to Opt-Cas12i3-5M and Opt-Cas12i3, respectively, due to progressive 5′-end resection of the DNA strand at the cleavage site with increased deletion size. The Opt-T5E-Cas12i3-5M enabled an editing efficiency ranging from 60.71% to 90.00% across four endogenous target genes in stable lines of three elite Chinese wheat varieties. Together, the developed robust Opt-T5E-Cas12i3-5M system enriches wheat genome editing toolkits for either biological research or genetic improvement and may be extended to other important polyploidy crop species.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"1216 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14544","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is one of the most important food crops in the world. CRISPR/Cas12i3, which belongs to the type V-I Cas system, has attracted extensive attention recently due to its smaller protein size and its less-restricted canonical ‘TTN’ protospacer adjacent motif (PAM). However, due to its relatively lower editing efficacy in plants and the hexaploidy complex nature of wheat, Cas12i3/Cas12i3-5M-mediated genome editing in wheat has not been documented yet. Here, we report the engineering of a robust Cas12i3-5M-mediated genome editing system in wheat through the fusion of T5 exonuclease (T5E) in combination with an optimised crRNA expression strategy (Opt). We first showed that fusion of T5E, rather than ExoI, to Cas12i3-5M increased the gene editing efficiencies by up to 1.34-fold and 3.87-fold, compared to Cas12i3-5M and Cas12i3 in HEK293T cells, respectively. However, its editing efficiency remains low in wheat. We then optimised the crRNA expression strategy and demonstrated that Opt-T5E-Cas12i3-5M could enhance the editing efficiency by 1.20- to 1.33-fold and 4.05- to 7.95-fold in wheat stable lines compared to Opt-Cas12i3-5M and Opt-Cas12i3, respectively, due to progressive 5′-end resection of the DNA strand at the cleavage site with increased deletion size. The Opt-T5E-Cas12i3-5M enabled an editing efficiency ranging from 60.71% to 90.00% across four endogenous target genes in stable lines of three elite Chinese wheat varieties. Together, the developed robust Opt-T5E-Cas12i3-5M system enriches wheat genome editing toolkits for either biological research or genetic improvement and may be extended to other important polyploidy crop species.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
The transcription factor OsNAC25 regulates potassium homeostasis in rice Engineering a robust Cas12i3 variant-mediated wheat genome editing system The OsNL1-OsTOPLESS2-OsMOC1/3 pathway regulates high-order tiller outgrowth in rice Identification and knockout of rhamnose synthase CiRHM1 enhances accumulation of flavone aglycones in chrysanthemum flower TmCOP1-TmHY5 module-mediated blue light signal promotes chicoric acid biosynthesis in Taraxacum mongolicum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1