Climate Change-Driven Long-Term Stability Risks of Ubiquitous Moraine Dams in Glacial Lakes on Qinghai-Tibet Plateau: A Multiphysics Coupling Evolution Perspective

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-12-17 DOI:10.1029/2024GL109350
Jia-Qing Zhou, Qi-Long Li, Yi-Feng Chen, Changdong Li, Jiu Jimmy Jiao, Huiming Tang
{"title":"Climate Change-Driven Long-Term Stability Risks of Ubiquitous Moraine Dams in Glacial Lakes on Qinghai-Tibet Plateau: A Multiphysics Coupling Evolution Perspective","authors":"Jia-Qing Zhou,&nbsp;Qi-Long Li,&nbsp;Yi-Feng Chen,&nbsp;Changdong Li,&nbsp;Jiu Jimmy Jiao,&nbsp;Huiming Tang","doi":"10.1029/2024GL109350","DOIUrl":null,"url":null,"abstract":"<p>Glacial lake-moraine dam systems are widespread in cold alpine environments such as the Qinghai-Tibet Plateau (QTP). Without climate change, the lake-dam system exhibits stably dynamic evolution on a hydrological annual cycle. However, climate change may drive subtle alterations in the system's evolution. We developed a fully coupled Thermal-Hydraulic-Mechanical simulation platform considering ice-water phase change, showing robust performance under CMIP6-derived boundary conditions. Using this platform, we simulated climate warming-driven multiphysics responses and dam stability evolutions of a homogeneous, simplified conceptual model of the lake-dam system. We identified critical temperature thresholds for permanently frozen area thawing and abrupt changes in dam stability of this lake-dam system. Considering the current slope stability situations on the QTP, the SSP 5–8.5 climate warming scenario is conservatively anticipated to pose significant geological safety risks due to potential disaster chains from glacial lake failures. Our study provides insights into profound geological process evolutions driven by climate change.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 24","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL109350","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL109350","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Glacial lake-moraine dam systems are widespread in cold alpine environments such as the Qinghai-Tibet Plateau (QTP). Without climate change, the lake-dam system exhibits stably dynamic evolution on a hydrological annual cycle. However, climate change may drive subtle alterations in the system's evolution. We developed a fully coupled Thermal-Hydraulic-Mechanical simulation platform considering ice-water phase change, showing robust performance under CMIP6-derived boundary conditions. Using this platform, we simulated climate warming-driven multiphysics responses and dam stability evolutions of a homogeneous, simplified conceptual model of the lake-dam system. We identified critical temperature thresholds for permanently frozen area thawing and abrupt changes in dam stability of this lake-dam system. Considering the current slope stability situations on the QTP, the SSP 5–8.5 climate warming scenario is conservatively anticipated to pose significant geological safety risks due to potential disaster chains from glacial lake failures. Our study provides insights into profound geological process evolutions driven by climate change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化驱动的青藏高原冰川湖泛冰碛坝长期稳定性风险:多物理场耦合演化视角
冰川湖-冰碛坝系统在青藏高原等寒冷的高寒环境中广泛存在。在没有气候变化的情况下,湖坝系统在水文年循环上呈现稳定的动态演化。然而,气候变化可能会在该系统的进化过程中引起微妙的变化。我们开发了一个考虑冰-水相变的完全耦合的热-液压-机械仿真平台,在cmip6导出的边界条件下表现出稳健的性能。利用该平台,我们模拟了气候变暖驱动的多物理场响应和湖泊-大坝系统的均匀简化概念模型的大坝稳定性演变。我们确定了永久冻土区解冻的临界温度阈值和该湖-坝系统大坝稳定性的突变。考虑到青藏高原目前的边坡稳定性情况,保守估计,SSP 5-8.5气候变暖情景将由于冰湖破坏的潜在灾害链而带来重大地质安全风险。我们的研究为气候变化驱动的地质过程演化提供了深刻的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Dust on Snow Radiative Forcing and Contribution to Melt in the Colorado River Basin Observations of Kinetic-Scale Magnetic Hole With Significant Energy Conversion in a Magnetotail Reconnection Diffusion Region A Global Assessment of Diurnal Discontinuities in ERA5 Tropospheric Zenith Total Delays Using 10 Years of GNSS Data Source Limitation Could Have Major Implications to Dust Emission Estimates Convection, but How Fast Does Fluid Mix in Hydrothermal Systems?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1