The Effect of Pseudo-Global Warming on the Weather-Climate System of Africa in a Convection-Permitting Model

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-12-18 DOI:10.1029/2024gl112341
K. M. Núñez Ocasio, Erin M. Dougherty
{"title":"The Effect of Pseudo-Global Warming on the Weather-Climate System of Africa in a Convection-Permitting Model","authors":"K. M. Núñez Ocasio, Erin M. Dougherty","doi":"10.1029/2024gl112341","DOIUrl":null,"url":null,"abstract":"The African easterly jet (AEJ) and the West African Monsoon (WAM) can largely modulate high-impact weather over Africa and the tropical Atlantic. How these features will change with a warming climate is just starting to be addressed due to global climate model limitations in resolving convection. We employ a novel regional setup for an atmospheric convection-permitting model alongside the pseudo-global warming (PGW) approach to address climate change impacts on the weather-climate system of Africa during a short period of high-impact weather. Our findings indicate that the AEJ and WAM may intensify in a future warming climate scenario. Precipitation is shown to increase over Guinea Highlands and Cameroon Mountains and shift southward due to a latitudinal expansion and increase of deep convection closer to the equator. This has relevant ramifications for the livelihood of communities that depend on water-fed crops in tropical Africa.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"48 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl112341","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The African easterly jet (AEJ) and the West African Monsoon (WAM) can largely modulate high-impact weather over Africa and the tropical Atlantic. How these features will change with a warming climate is just starting to be addressed due to global climate model limitations in resolving convection. We employ a novel regional setup for an atmospheric convection-permitting model alongside the pseudo-global warming (PGW) approach to address climate change impacts on the weather-climate system of Africa during a short period of high-impact weather. Our findings indicate that the AEJ and WAM may intensify in a future warming climate scenario. Precipitation is shown to increase over Guinea Highlands and Cameroon Mountains and shift southward due to a latitudinal expansion and increase of deep convection closer to the equator. This has relevant ramifications for the livelihood of communities that depend on water-fed crops in tropical Africa.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
The Effect of Pseudo-Global Warming on the Weather-Climate System of Africa in a Convection-Permitting Model Differentiated Impacts of Central and Eastern Atlantic Niño on Hurricane Activity in the Tropical North Atlantic Woody Cover Fuels Large Wildfire Risk in the Eastern US Climate Change-Driven Long-Term Stability Risks of Ubiquitous Moraine Dams in Glacial Lakes on Qinghai-Tibet Plateau: A Multiphysics Coupling Evolution Perspective Basic Physics Predicts Stronger High Cloud Radiative Heating With Warming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1