S. Emil Ruff, Isabella Hrabe de Angelis, Megan Mullis, Jérôme P. Payet, Cara Magnabosco, Karen G. Lloyd, Cody S. Sheik, Andrew D. Steen, Anna Shipunova, Aleksey Morozov, Brandi Kiel Reese, James A. Bradley, Clarisse Lemonnier, Matthew O. Schrenk, Samantha B. Joye, Julie A. Huber, Alexander J. Probst, Hilary G. Morrison, Mitchell L. Sogin, Joshua Ladau, Frederick Colwell
{"title":"A global comparison of surface and subsurface microbiomes reveals large-scale biodiversity gradients, and a marine-terrestrial divide","authors":"S. Emil Ruff, Isabella Hrabe de Angelis, Megan Mullis, Jérôme P. Payet, Cara Magnabosco, Karen G. Lloyd, Cody S. Sheik, Andrew D. Steen, Anna Shipunova, Aleksey Morozov, Brandi Kiel Reese, James A. Bradley, Clarisse Lemonnier, Matthew O. Schrenk, Samantha B. Joye, Julie A. Huber, Alexander J. Probst, Hilary G. Morrison, Mitchell L. Sogin, Joshua Ladau, Frederick Colwell","doi":"10.1126/sciadv.adq0645","DOIUrl":null,"url":null,"abstract":"Subsurface environments are among Earth’s largest habitats for microbial life. Yet, until recently, we lacked adequate data to accurately differentiate between globally distributed marine and terrestrial surface and subsurface microbiomes. Here, we analyzed 478 archaeal and 964 bacterial metabarcoding datasets and 147 metagenomes from diverse and widely distributed environments. Microbial diversity is similar in marine and terrestrial microbiomes at local to global scales. However, community composition greatly differs between sea and land, corroborating a phylogenetic divide that mirrors patterns in plant and animal diversity. In contrast, community composition overlaps between surface to subsurface environments supporting a diversity continuum rather than a discrete subsurface biosphere. Differences in microbial life thus seem greater between land and sea than between surface and subsurface. Diversity of terrestrial microbiomes decreases with depth, while marine subsurface diversity and phylogenetic distance to cultured isolates rivals or exceeds that of surface environments. We identify distinct microbial community compositions but similar microbial diversity for Earth’s subsurface and surface environments.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"30 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq0645","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Subsurface environments are among Earth’s largest habitats for microbial life. Yet, until recently, we lacked adequate data to accurately differentiate between globally distributed marine and terrestrial surface and subsurface microbiomes. Here, we analyzed 478 archaeal and 964 bacterial metabarcoding datasets and 147 metagenomes from diverse and widely distributed environments. Microbial diversity is similar in marine and terrestrial microbiomes at local to global scales. However, community composition greatly differs between sea and land, corroborating a phylogenetic divide that mirrors patterns in plant and animal diversity. In contrast, community composition overlaps between surface to subsurface environments supporting a diversity continuum rather than a discrete subsurface biosphere. Differences in microbial life thus seem greater between land and sea than between surface and subsurface. Diversity of terrestrial microbiomes decreases with depth, while marine subsurface diversity and phylogenetic distance to cultured isolates rivals or exceeds that of surface environments. We identify distinct microbial community compositions but similar microbial diversity for Earth’s subsurface and surface environments.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.