Zhemin Zhang, Meinan Lyu, Xu Han, Sepalika Bandara, Meng Cui, Eva S. Istvan, Xinran Geng, Marios L. Tringides, William D. Gregor, Masaru Miyagi, Jenna Oberstaller, John H. Adams, Youwei Zhang, Marvin T. Nieman, Johannes von Lintig, Daniel E. Goldberg, Edward W. Yu
{"title":"The Plasmodium falciparum NCR1 transporter is an antimalarial target that exports cholesterol from the parasite’s plasma membrane","authors":"Zhemin Zhang, Meinan Lyu, Xu Han, Sepalika Bandara, Meng Cui, Eva S. Istvan, Xinran Geng, Marios L. Tringides, William D. Gregor, Masaru Miyagi, Jenna Oberstaller, John H. Adams, Youwei Zhang, Marvin T. Nieman, Johannes von Lintig, Daniel E. Goldberg, Edward W. Yu","doi":"10.1126/sciadv.adq6651","DOIUrl":null,"url":null,"abstract":"Malaria, a devastating parasitic infection, is the leading cause of death in many developing countries. Unfortunately, the most deadliest causative agent of malaria, <jats:italic>Plasmodium falciparum</jats:italic> , has developed resistance to nearly all currently available antimalarial drugs. The <jats:italic>P. falciparum</jats:italic> Niemann-Pick type C1–related (PfNCR1) transporter has been identified as a druggable target, but its structure and detailed molecular mechanism are not yet available. Here, we present three structures of PfNCR1 with and without the functional inhibitor MMV009108 at resolutions between 2.98 and 3.81 Å using single-particle cryo–electron microscopy (cryo-EM), suggesting that PfNCR1 binds cholesterol and forms a cholesterol transport tunnel to modulate the composition of the parasite plasma membrane. Cholesterol efflux assays show that PfNCR1 is an exporter capable of extruding cholesterol from the membrane. Additionally, the inhibition mechanism of MMV009108 appears to be due to a direct blockage of PfNCR1, preventing this transporter from shuttling cholesterol.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"47 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq6651","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Malaria, a devastating parasitic infection, is the leading cause of death in many developing countries. Unfortunately, the most deadliest causative agent of malaria, Plasmodium falciparum , has developed resistance to nearly all currently available antimalarial drugs. The P. falciparum Niemann-Pick type C1–related (PfNCR1) transporter has been identified as a druggable target, but its structure and detailed molecular mechanism are not yet available. Here, we present three structures of PfNCR1 with and without the functional inhibitor MMV009108 at resolutions between 2.98 and 3.81 Å using single-particle cryo–electron microscopy (cryo-EM), suggesting that PfNCR1 binds cholesterol and forms a cholesterol transport tunnel to modulate the composition of the parasite plasma membrane. Cholesterol efflux assays show that PfNCR1 is an exporter capable of extruding cholesterol from the membrane. Additionally, the inhibition mechanism of MMV009108 appears to be due to a direct blockage of PfNCR1, preventing this transporter from shuttling cholesterol.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.