Enhanced Performance of Sn-Based Perovskite Photodetectors Through Double-Sided Passivation for Near-Infrared Applications

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-12-18 DOI:10.1002/smll.202409592
Yu Hsuan Lai, Chien Cheng Li, Yu Chuan Huang, Tzu Yu Huang, Xin Kai Gao, Chung Chi Yang, Chih Shan Tan
{"title":"Enhanced Performance of Sn-Based Perovskite Photodetectors Through Double-Sided Passivation for Near-Infrared Applications","authors":"Yu Hsuan Lai,&nbsp;Chien Cheng Li,&nbsp;Yu Chuan Huang,&nbsp;Tzu Yu Huang,&nbsp;Xin Kai Gao,&nbsp;Chung Chi Yang,&nbsp;Chih Shan Tan","doi":"10.1002/smll.202409592","DOIUrl":null,"url":null,"abstract":"<p>The development of high-performance Sn-based perovskite photodetectors is presented with double-sided passivation using large alkylammonium interlayers of PEAI and BDAI₂. This dual passivation strategy, applied to the top and bottom of FASnI₃ films, effectively improves film quality by reducing defect density, enhancing carrier mobility, and minimizing non-radiative energy losses at the interfaces. At 720 nm, the photodetectors demonstrate a responsivity of 0.37 A W<sup>−1</sup>, a detectivity of 6.12 × 10¹<sup>3</sup> Jones, and an external quantum efficiency (EQE) of 65.60%, with a rapid response time of 9 µs. Additionally, at 850 nm, the detectivity reaches as high as 3.27 × 10¹<sup>3</sup> Jones. Furthermore, the device demonstrated a low 1/f noise of 1.21 × 10⁻¹⁵ AHz⁻⁰.⁵ at 10 Hz. Transient photocurrent (TPC) and transient photovoltage (TPV) measurements revealed a significant increase in charge recombination lifetime (τ<sub>e</sub>) and improved charge transfer efficiency. These results showcase the potential of Sn perovskite photodetectors for near-infrared applications, including autonomous vehicles, biometric recognition, and biomedical treatments.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 5","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202409592","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409592","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-performance Sn-based perovskite photodetectors is presented with double-sided passivation using large alkylammonium interlayers of PEAI and BDAI₂. This dual passivation strategy, applied to the top and bottom of FASnI₃ films, effectively improves film quality by reducing defect density, enhancing carrier mobility, and minimizing non-radiative energy losses at the interfaces. At 720 nm, the photodetectors demonstrate a responsivity of 0.37 A W−1, a detectivity of 6.12 × 10¹3 Jones, and an external quantum efficiency (EQE) of 65.60%, with a rapid response time of 9 µs. Additionally, at 850 nm, the detectivity reaches as high as 3.27 × 10¹3 Jones. Furthermore, the device demonstrated a low 1/f noise of 1.21 × 10⁻¹⁵ AHz⁻⁰.⁵ at 10 Hz. Transient photocurrent (TPC) and transient photovoltage (TPV) measurements revealed a significant increase in charge recombination lifetime (τe) and improved charge transfer efficiency. These results showcase the potential of Sn perovskite photodetectors for near-infrared applications, including autonomous vehicles, biometric recognition, and biomedical treatments.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过双面钝化提高近红外sn基钙钛矿光电探测器的性能
通过使用 PEAI 和 BDAI₂的大型烷基铵夹层进行双面钝化,介绍了基于锡的高性能过氧化物光电探测器的开发过程。这种双面钝化策略适用于 FASnI₃薄膜的顶部和底部,通过降低缺陷密度、提高载流子迁移率和最大限度地减少界面上的非辐射能量损失,有效地提高了薄膜的质量。在 720 纳米波长下,光电探测器的响应率为 0.37 A W-1,探测率为 6.12 × 10¹3 Jones,外部量子效率 (EQE) 为 65.60%,快速响应时间为 9 µs。此外,在 850 纳米波长下,检测率高达 3.27 × 10¹3 琼斯。此外,该器件在 10 Hz 时的 1/f 噪声低至 1.21 × 10-¹⁵ AHz-⁰.⁵。瞬态光电流(TPC)和瞬态光电压(TPV)测量显示,电荷重组寿命(τe)显著增加,电荷转移效率也有所提高。这些结果展示了锡包晶体光电探测器在近红外应用方面的潜力,包括自动驾驶汽车、生物识别和生物医学治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Fiber Optic Boltzmann Thermometry in a Doped Halide Double Perovskite for Dynamic Temperature Monitoring in Pouch Cell Quasi-2D Scaffolding for Enhanced Stability and Efficiency in 1.67 eV Cs-Rich Pure-Iodide Perovskite Solar Cells Gd-doped Pt3Co Nanoparticles Embedded in Hollow Mesoporous Carbon Derived From Space-Confined Polymerization of Indene Boosting Oxygen Reduction Reaction One-Dose Bioorthogonal Gadolinium Nanoprobes for Prolonged Radiosensitization of Tumor Adhesive Hydrogel Paint for Passive Heat Dissipation via Radiative Coupled Evaporation Cooling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1