{"title":"Heating, Excitation, Dissociation, and Ionization of Molecules by High-Energy Photons in Planetary Atmospheres","authors":"Antonio García Muñoz*, and , Ewan Bataille, ","doi":"10.1021/acsearthspacechem.4c0027310.1021/acsearthspacechem.4c00273","DOIUrl":null,"url":null,"abstract":"<p >Photoionization by high-energy photons creates nonthermal electrons with a broad range of energies that heat and chemically transform the atmospheres of planets. The specifics of the interactions are notably different when the gas is atomic or molecular. Motivated by the idea that molecules survive to high altitudes in some exoplanets, we built a model for the energy transfer from nonthermal electrons to the H<sub>2</sub>O, H<sub>2</sub>, and O<sub>2</sub> molecules. Our calculations show that the primary electrons of energy above about a hundred eV, a likely outcome from X-ray photoionization at moderately high atmospheric densities, expend most of their energy in ionization, dissociation, and electronic excitation collisions. In contrast, the primary electrons of less than about ten eV, such as those produced by extreme-ultraviolet photons at low densities, expend most of their energy in momentum transfer (heating), rotational, and vibrational excitation collisions. The partitioning between channels with weak thresholds is particularly sensitive to local fractional ionization. The transition between these two situations introduces a parallel transition in the way that the stellar energy is deposited in the atmosphere. Our calculations show that the nonthermal electrons enhance the ionization rate by a factor of a few or more with respect to photoionization alone but may not greatly contribute to the direct dissociation of molecules unless the local flux of far-ultraviolet photons is relatively weak. These findings highlight the importance of tracking the energy from the incident photons to the nonthermal electrons and onto the gas for problems concerned with the remote sensing and energy balance of exoplanet atmospheres.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"8 12","pages":"2652–2663 2652–2663"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00273","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoionization by high-energy photons creates nonthermal electrons with a broad range of energies that heat and chemically transform the atmospheres of planets. The specifics of the interactions are notably different when the gas is atomic or molecular. Motivated by the idea that molecules survive to high altitudes in some exoplanets, we built a model for the energy transfer from nonthermal electrons to the H2O, H2, and O2 molecules. Our calculations show that the primary electrons of energy above about a hundred eV, a likely outcome from X-ray photoionization at moderately high atmospheric densities, expend most of their energy in ionization, dissociation, and electronic excitation collisions. In contrast, the primary electrons of less than about ten eV, such as those produced by extreme-ultraviolet photons at low densities, expend most of their energy in momentum transfer (heating), rotational, and vibrational excitation collisions. The partitioning between channels with weak thresholds is particularly sensitive to local fractional ionization. The transition between these two situations introduces a parallel transition in the way that the stellar energy is deposited in the atmosphere. Our calculations show that the nonthermal electrons enhance the ionization rate by a factor of a few or more with respect to photoionization alone but may not greatly contribute to the direct dissociation of molecules unless the local flux of far-ultraviolet photons is relatively weak. These findings highlight the importance of tracking the energy from the incident photons to the nonthermal electrons and onto the gas for problems concerned with the remote sensing and energy balance of exoplanet atmospheres.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.