Effects of All-Atom and Coarse-Grained Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of a Tau K18 Monomer

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-11-23 DOI:10.1021/acs.jcim.4c0144810.1021/acs.jcim.4c01448
Xibing He, Viet Hoang Man, Jie Gao and Junmei Wang*, 
{"title":"Effects of All-Atom and Coarse-Grained Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of a Tau K18 Monomer","authors":"Xibing He,&nbsp;Viet Hoang Man,&nbsp;Jie Gao and Junmei Wang*,&nbsp;","doi":"10.1021/acs.jcim.4c0144810.1021/acs.jcim.4c01448","DOIUrl":null,"url":null,"abstract":"<p >To propose new mechanism-based therapeutics for Alzheimer’s disease (AD), it is crucial to study the kinetics and oligomerization/aggregation mechanisms of the hallmark tau proteins, which have various isoforms and are intrinsically disordered. In this study, multiple all-atom (AA) and coarse-grained (CG) force fields (FFs) have been benchmarked on molecular dynamics (MD) simulations of K18 tau (M243–E372), which is a truncated form (130 residues) of full-length tau (441 residues). FF19SB is first excluded because the dynamics are too slow, and the conformations are too stable. All other benchmarked AAFFs (Charmm36m, FF14SB, Gromos54A7, and OPLS-AA) and CGFFs (Martini3 and Sirah2.0) exhibit a trend of shrinking K18 tau into compact structures with the radius of gyration (ROG) around 2.0 nm, which is much smaller than the experimental value of 3.8 nm, within 200 ns of AA-MD or 2000 ns of CG-MD. Gromos54A7, OPLS-AA, and Martini3 shrink much faster than the other FFs. To perform meaningful postanalysis of various properties, we propose a strategy of selecting snapshots with 2.5 &lt; ROG &lt; 4.5 nm, instead of using all sampled snapshots. The calculated chemical shifts of all C, CA, and CB atoms have very good and close root-mean-square error (RMSE) values, while Charmm36m and Sirah2.0 exhibit better chemical shifts of N than other FFs. Comparing the calculated distributions of the distance between the CA atoms of CYS291 and CYS322 with the results of the FRET experiment demonstrates that Charmm36m is a perfect match with the experiment while other FFs exhibit limitations. In summary, Charmm36m is recommended as the best AAFF, and Sirah2.0 is recommended as an excellent CGFF for simulating tau K18.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 23","pages":"8880–8891 8880–8891"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01448","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

To propose new mechanism-based therapeutics for Alzheimer’s disease (AD), it is crucial to study the kinetics and oligomerization/aggregation mechanisms of the hallmark tau proteins, which have various isoforms and are intrinsically disordered. In this study, multiple all-atom (AA) and coarse-grained (CG) force fields (FFs) have been benchmarked on molecular dynamics (MD) simulations of K18 tau (M243–E372), which is a truncated form (130 residues) of full-length tau (441 residues). FF19SB is first excluded because the dynamics are too slow, and the conformations are too stable. All other benchmarked AAFFs (Charmm36m, FF14SB, Gromos54A7, and OPLS-AA) and CGFFs (Martini3 and Sirah2.0) exhibit a trend of shrinking K18 tau into compact structures with the radius of gyration (ROG) around 2.0 nm, which is much smaller than the experimental value of 3.8 nm, within 200 ns of AA-MD or 2000 ns of CG-MD. Gromos54A7, OPLS-AA, and Martini3 shrink much faster than the other FFs. To perform meaningful postanalysis of various properties, we propose a strategy of selecting snapshots with 2.5 < ROG < 4.5 nm, instead of using all sampled snapshots. The calculated chemical shifts of all C, CA, and CB atoms have very good and close root-mean-square error (RMSE) values, while Charmm36m and Sirah2.0 exhibit better chemical shifts of N than other FFs. Comparing the calculated distributions of the distance between the CA atoms of CYS291 and CYS322 with the results of the FRET experiment demonstrates that Charmm36m is a perfect match with the experiment while other FFs exhibit limitations. In summary, Charmm36m is recommended as the best AAFF, and Sirah2.0 is recommended as an excellent CGFF for simulating tau K18.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Evaluations of the Perturbation Resistance of the Deep-Learning-Based Ligand Conformation Optimization Algorithm. Large Language Model for Automating the Analysis of Cryoprotectants. Free Energy-Based Refinement of DNA Force Field via Modification of Multiple Nonbonding Energy Terms. N-Tosyl Hydrazone Benzopyran, a New Ligand of PPARα Obtained from Mapping the Conformational Space of Its Active Site. Deep Learning-Driven Insights into Enzyme-Substrate Interaction Discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1