{"title":"Evaluations of the Perturbation Resistance of the Deep-Learning-Based Ligand Conformation Optimization Algorithm.","authors":"Minghui Xin,Zechen Wang,Zhihao Wang,Yuanyuan Qu,Yanmei Yang,Yong-Qiang Li,Mingwen Zhao,Liangzhen Zheng,Yuguang Mu,Weifeng Li","doi":"10.1021/acs.jcim.4c01096","DOIUrl":null,"url":null,"abstract":"In recent years, the deep learning (DL) technique has rapidly developed and shown great success in scoring the protein-ligand binding affinities. The protein-ligand conformation optimization based on DL-derived scoring functions holds broad application prospects, for instance, drug design and enzyme engineering. In this study, we evaluated the robustness of a DL-based ligand conformation optimization protocol (DeepRMSD+Vina) for optimizing structures with input perturbations by examining the predicted ligand binding poses and scoring. Our results clearly indicated that compared to traditional optimization algorithms (such as Prime MM-GBSA and Vina optimization), DeepRMSD+Vina exhibits higher performance when treating diverse protein-ligand cases. The DeepRMSD+Vina is robust and can always generate the correct binding structures even if perturbations (up to 3 Å) are introduced to the input structure. The success rate is 62% for perturbation with a RMSD within 2-3 Å. However, the success rate dramatically drops to 11% for large perturbations, with RMSD extending to 3-4 Å. Furthermore, compared to the widely used optimization protocol of AutoDock Vina, the DL-generated conformation shows a balanced performance for all of the systems under examination. Overall, the DL-based DeepRMSD+Vina is unarguably more reliable than the traditional methods, which is attributed to the physically inspired design of the neural networks in DeepRMSD+Vina where the distance-transformed features describing the atomic interactions between the protein and the ligand have been explicitly considered and modeled. The outstanding robustness of the DL-based ligand conformational optimization algorithm further validates its superiority in the field of conformational optimization.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"19 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01096","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the deep learning (DL) technique has rapidly developed and shown great success in scoring the protein-ligand binding affinities. The protein-ligand conformation optimization based on DL-derived scoring functions holds broad application prospects, for instance, drug design and enzyme engineering. In this study, we evaluated the robustness of a DL-based ligand conformation optimization protocol (DeepRMSD+Vina) for optimizing structures with input perturbations by examining the predicted ligand binding poses and scoring. Our results clearly indicated that compared to traditional optimization algorithms (such as Prime MM-GBSA and Vina optimization), DeepRMSD+Vina exhibits higher performance when treating diverse protein-ligand cases. The DeepRMSD+Vina is robust and can always generate the correct binding structures even if perturbations (up to 3 Å) are introduced to the input structure. The success rate is 62% for perturbation with a RMSD within 2-3 Å. However, the success rate dramatically drops to 11% for large perturbations, with RMSD extending to 3-4 Å. Furthermore, compared to the widely used optimization protocol of AutoDock Vina, the DL-generated conformation shows a balanced performance for all of the systems under examination. Overall, the DL-based DeepRMSD+Vina is unarguably more reliable than the traditional methods, which is attributed to the physically inspired design of the neural networks in DeepRMSD+Vina where the distance-transformed features describing the atomic interactions between the protein and the ligand have been explicitly considered and modeled. The outstanding robustness of the DL-based ligand conformational optimization algorithm further validates its superiority in the field of conformational optimization.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.