Evaluations of the Perturbation Resistance of the Deep-Learning-Based Ligand Conformation Optimization Algorithm.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-12-26 DOI:10.1021/acs.jcim.4c01096
Minghui Xin,Zechen Wang,Zhihao Wang,Yuanyuan Qu,Yanmei Yang,Yong-Qiang Li,Mingwen Zhao,Liangzhen Zheng,Yuguang Mu,Weifeng Li
{"title":"Evaluations of the Perturbation Resistance of the Deep-Learning-Based Ligand Conformation Optimization Algorithm.","authors":"Minghui Xin,Zechen Wang,Zhihao Wang,Yuanyuan Qu,Yanmei Yang,Yong-Qiang Li,Mingwen Zhao,Liangzhen Zheng,Yuguang Mu,Weifeng Li","doi":"10.1021/acs.jcim.4c01096","DOIUrl":null,"url":null,"abstract":"In recent years, the deep learning (DL) technique has rapidly developed and shown great success in scoring the protein-ligand binding affinities. The protein-ligand conformation optimization based on DL-derived scoring functions holds broad application prospects, for instance, drug design and enzyme engineering. In this study, we evaluated the robustness of a DL-based ligand conformation optimization protocol (DeepRMSD+Vina) for optimizing structures with input perturbations by examining the predicted ligand binding poses and scoring. Our results clearly indicated that compared to traditional optimization algorithms (such as Prime MM-GBSA and Vina optimization), DeepRMSD+Vina exhibits higher performance when treating diverse protein-ligand cases. The DeepRMSD+Vina is robust and can always generate the correct binding structures even if perturbations (up to 3 Å) are introduced to the input structure. The success rate is 62% for perturbation with a RMSD within 2-3 Å. However, the success rate dramatically drops to 11% for large perturbations, with RMSD extending to 3-4 Å. Furthermore, compared to the widely used optimization protocol of AutoDock Vina, the DL-generated conformation shows a balanced performance for all of the systems under examination. Overall, the DL-based DeepRMSD+Vina is unarguably more reliable than the traditional methods, which is attributed to the physically inspired design of the neural networks in DeepRMSD+Vina where the distance-transformed features describing the atomic interactions between the protein and the ligand have been explicitly considered and modeled. The outstanding robustness of the DL-based ligand conformational optimization algorithm further validates its superiority in the field of conformational optimization.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"19 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01096","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the deep learning (DL) technique has rapidly developed and shown great success in scoring the protein-ligand binding affinities. The protein-ligand conformation optimization based on DL-derived scoring functions holds broad application prospects, for instance, drug design and enzyme engineering. In this study, we evaluated the robustness of a DL-based ligand conformation optimization protocol (DeepRMSD+Vina) for optimizing structures with input perturbations by examining the predicted ligand binding poses and scoring. Our results clearly indicated that compared to traditional optimization algorithms (such as Prime MM-GBSA and Vina optimization), DeepRMSD+Vina exhibits higher performance when treating diverse protein-ligand cases. The DeepRMSD+Vina is robust and can always generate the correct binding structures even if perturbations (up to 3 Å) are introduced to the input structure. The success rate is 62% for perturbation with a RMSD within 2-3 Å. However, the success rate dramatically drops to 11% for large perturbations, with RMSD extending to 3-4 Å. Furthermore, compared to the widely used optimization protocol of AutoDock Vina, the DL-generated conformation shows a balanced performance for all of the systems under examination. Overall, the DL-based DeepRMSD+Vina is unarguably more reliable than the traditional methods, which is attributed to the physically inspired design of the neural networks in DeepRMSD+Vina where the distance-transformed features describing the atomic interactions between the protein and the ligand have been explicitly considered and modeled. The outstanding robustness of the DL-based ligand conformational optimization algorithm further validates its superiority in the field of conformational optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Estimation of Ligand Binding Free Energy Using Multi-eGO. Molecular Mechanisms Underlying the Loop-Closing Dynamics of β-1,4 Galactosyltransferase 1. Detection of Putative Ligand Dissociation Pathways in Proteins Using Site-Identification by Ligand Competitive Saturation. Evaluations of the Perturbation Resistance of the Deep-Learning-Based Ligand Conformation Optimization Algorithm. Large Language Model for Automating the Analysis of Cryoprotectants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1