Efficient Extraction of [Bmim]BF4 by Organic-Aqueous System of NaBr-H2O and CH2Cl2

IF 2 3区 工程技术 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Chemical & Engineering Data Pub Date : 2024-11-19 DOI:10.1021/acs.jced.4c0043410.1021/acs.jced.4c00434
Yingqiu Wu, Daoguang Wang, Shengwang Zou, Junfeng Wang* and Shangqing Chen*, 
{"title":"Efficient Extraction of [Bmim]BF4 by Organic-Aqueous System of NaBr-H2O and CH2Cl2","authors":"Yingqiu Wu,&nbsp;Daoguang Wang,&nbsp;Shengwang Zou,&nbsp;Junfeng Wang* and Shangqing Chen*,&nbsp;","doi":"10.1021/acs.jced.4c0043410.1021/acs.jced.4c00434","DOIUrl":null,"url":null,"abstract":"<p >The homogeneous [Bmim]BF<sub>4</sub>-NaBr-H<sub>2</sub>O system will be obtained in the industrial synthesis of [Bmim]BF<sub>4</sub>, and the extraction of [Bmim]BF<sub>4</sub> from such a system remains to be challenging. In this work, dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>), is used as the organic phase to extract and separate [Bmim]BF<sub>4</sub> (1-butyl-3-methylimidazolium tetrafluoroborate) from the reaction solution. Dichloromethane, serving as the extracting agent, effectively facilitates the purification and component separation of the ionic liquid [Bmim]BF<sub>4</sub> postreaction, enhancing the reaction efficiency and product purity. The influence of operating parameters, including initial concentration of the ionic liquid (IL), temperature, O/A ratio (the volume ratio of organic phase to aqueous phase), and initial concentration of NaBr, on IL separation and extraction were investigated. It was found that the recovery ratio of IL and the separation factor could reach 90.3% and 133.19 at optimized extraction conditions. Moreover, this method was appropriate for the extraction of [Bmim]BF<sub>4</sub> at different concentrations. As a result, this work developed an optimized extraction scheme to maximize the yield of [Bmim]BF<sub>4</sub> using an organic and aqueous two-phase system of NaBr-H<sub>2</sub>O and CH<sub>2</sub>Cl<sub>2</sub>, which could provide essential technological parameters for the efficient extraction of [Bmim]BF<sub>4</sub> in the NaBr-H<sub>2</sub>O-CH<sub>2</sub>Cl<sub>2</sub> two-phase system.</p>","PeriodicalId":42,"journal":{"name":"Journal of Chemical & Engineering Data","volume":"69 12","pages":"4438–4444 4438–4444"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical & Engineering Data","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jced.4c00434","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The homogeneous [Bmim]BF4-NaBr-H2O system will be obtained in the industrial synthesis of [Bmim]BF4, and the extraction of [Bmim]BF4 from such a system remains to be challenging. In this work, dichloromethane (CH2Cl2), is used as the organic phase to extract and separate [Bmim]BF4 (1-butyl-3-methylimidazolium tetrafluoroborate) from the reaction solution. Dichloromethane, serving as the extracting agent, effectively facilitates the purification and component separation of the ionic liquid [Bmim]BF4 postreaction, enhancing the reaction efficiency and product purity. The influence of operating parameters, including initial concentration of the ionic liquid (IL), temperature, O/A ratio (the volume ratio of organic phase to aqueous phase), and initial concentration of NaBr, on IL separation and extraction were investigated. It was found that the recovery ratio of IL and the separation factor could reach 90.3% and 133.19 at optimized extraction conditions. Moreover, this method was appropriate for the extraction of [Bmim]BF4 at different concentrations. As a result, this work developed an optimized extraction scheme to maximize the yield of [Bmim]BF4 using an organic and aqueous two-phase system of NaBr-H2O and CH2Cl2, which could provide essential technological parameters for the efficient extraction of [Bmim]BF4 in the NaBr-H2O-CH2Cl2 two-phase system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical & Engineering Data
Journal of Chemical & Engineering Data 工程技术-工程:化工
CiteScore
5.20
自引率
19.20%
发文量
324
审稿时长
2.2 months
期刊介绍: The Journal of Chemical & Engineering Data is a monthly journal devoted to the publication of data obtained from both experiment and computation, which are viewed as complementary. It is the only American Chemical Society journal primarily concerned with articles containing data on the phase behavior and the physical, thermodynamic, and transport properties of well-defined materials, including complex mixtures of known compositions. While environmental and biological samples are of interest, their compositions must be known and reproducible. As a result, adsorption on natural product materials does not generally fit within the scope of Journal of Chemical & Engineering Data.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Preface to the Special Issue in Honor of Xiaohua Lu Phase Behavior and Compression Factors of Ultradeep Condensate and Dry Gas Reservoir under High Temperature and Pressure: Experiment and Calculation Efficient Extraction of [Bmim]BF4 by Organic-Aqueous System of NaBr-H2O and CH2Cl2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1