Insight into the Structure and Formation Mechanism of Esmolol Hydrochloride Polymorphs Based on Experiments and Molecular Simulations

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-12-09 DOI:10.1021/acs.cgd.4c0101510.1021/acs.cgd.4c01015
Hongchang Wu, Ting Wang*, Di Wu, Yaoguang Feng, Yutong Yao, Jiamin Zhang, Yifu Zhang, Xin Huang*, Na Wang and Hongxun Hao, 
{"title":"Insight into the Structure and Formation Mechanism of Esmolol Hydrochloride Polymorphs Based on Experiments and Molecular Simulations","authors":"Hongchang Wu,&nbsp;Ting Wang*,&nbsp;Di Wu,&nbsp;Yaoguang Feng,&nbsp;Yutong Yao,&nbsp;Jiamin Zhang,&nbsp;Yifu Zhang,&nbsp;Xin Huang*,&nbsp;Na Wang and Hongxun Hao,&nbsp;","doi":"10.1021/acs.cgd.4c0101510.1021/acs.cgd.4c01015","DOIUrl":null,"url":null,"abstract":"<p >Esmolol hydrochloride (EH) is a β-adrenergic receptor blocking drug widely employed for atrial fibrillation and nodal tachycardia. However, to date, no systematic investigations into its polymorphism have been conducted, posing a risk of polymorphic transformations during storage or downstream processes. In this study, three solvent-free forms of EH (Form A, Form B, and Form C) were successfully obtained, with Form B and Form C being reported for the first time. Single-crystal X-ray diffraction was employed to investigate the structure differences among the polymorphs, and a range of solid-state analytical techniques was employed to evaluate the stability of the three polymorphs. Crystal structure and Hirshfeld surface analyses revealed substantial differences in hydrogen-bonding interactions and molecular packing among the EH polymorphs. Furthermore, molecular electrostatic potential surface analyses and dynamics simulations indicate that the hydrogen-bonding strength between EH and solvent molecules increases in the order ethyl acetate &lt; methyl acetate &lt; water, influencing the ease of desolvation and consequently resulting in distinct polymorphs. The findings of this study provide valuable insights into the polymorphs and quality control of EH.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"24 24","pages":"10182–10192 10182–10192"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01015","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Esmolol hydrochloride (EH) is a β-adrenergic receptor blocking drug widely employed for atrial fibrillation and nodal tachycardia. However, to date, no systematic investigations into its polymorphism have been conducted, posing a risk of polymorphic transformations during storage or downstream processes. In this study, three solvent-free forms of EH (Form A, Form B, and Form C) were successfully obtained, with Form B and Form C being reported for the first time. Single-crystal X-ray diffraction was employed to investigate the structure differences among the polymorphs, and a range of solid-state analytical techniques was employed to evaluate the stability of the three polymorphs. Crystal structure and Hirshfeld surface analyses revealed substantial differences in hydrogen-bonding interactions and molecular packing among the EH polymorphs. Furthermore, molecular electrostatic potential surface analyses and dynamics simulations indicate that the hydrogen-bonding strength between EH and solvent molecules increases in the order ethyl acetate < methyl acetate < water, influencing the ease of desolvation and consequently resulting in distinct polymorphs. The findings of this study provide valuable insights into the polymorphs and quality control of EH.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Three-Dimensional Nondestructive Characterization of Extrinsic Frank-Type Stacking Faults in 4H-SiC Crystals Insight into the Structure and Formation Mechanism of Esmolol Hydrochloride Polymorphs Based on Experiments and Molecular Simulations Mechanism and Kinetics of Hydration of CuSO4·H2O in the Presence of an Intermediate Step
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1