Fine-Tuning Foundation Models With Confidence Assessment for Enhanced Semantic Segmentation

Nikolaos Dionelis;Nicolas Longépé
{"title":"Fine-Tuning Foundation Models With Confidence Assessment for Enhanced Semantic Segmentation","authors":"Nikolaos Dionelis;Nicolas Longépé","doi":"10.1109/LGRS.2024.3504293","DOIUrl":null,"url":null,"abstract":"Confidence assessments of semantic segmentation algorithms are important. Ideally, models should have the ability to predict in advance whether their output is likely to be incorrect. Assessing the confidence levels of model predictions in Earth observation (EO) classification is essential, as it can enhance semantic segmentation performance and help prevent further exploitation of the results in the case of erroneous prediction. The model we developed, Confidence Assessment for enhanced Semantic segmentation (CAS), evaluates confidence at both the segment and pixel levels, providing both labels and confidence scores as output. Our model, CAS, identifies segments with incorrectly predicted labels using the proposed combined confidence metric, refines the model, and enhances its performance. This work has significant applications, particularly in evaluating EO Foundation Models on semantic segmentation downstream tasks, such as land-cover classification using Sentinel-2 satellite data. The evaluation results show that this strategy is effective and that the proposed model CAS outperforms other baseline models.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759697","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759697/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Confidence assessments of semantic segmentation algorithms are important. Ideally, models should have the ability to predict in advance whether their output is likely to be incorrect. Assessing the confidence levels of model predictions in Earth observation (EO) classification is essential, as it can enhance semantic segmentation performance and help prevent further exploitation of the results in the case of erroneous prediction. The model we developed, Confidence Assessment for enhanced Semantic segmentation (CAS), evaluates confidence at both the segment and pixel levels, providing both labels and confidence scores as output. Our model, CAS, identifies segments with incorrectly predicted labels using the proposed combined confidence metric, refines the model, and enhances its performance. This work has significant applications, particularly in evaluating EO Foundation Models on semantic segmentation downstream tasks, such as land-cover classification using Sentinel-2 satellite data. The evaluation results show that this strategy is effective and that the proposed model CAS outperforms other baseline models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deeper and Broader Multimodal Fusion: Cascaded Forest-of-Experts for Land Cover Classification Impact of Targeted Sounding Observations From FY-4B GIIRS on Two Super Typhoon Forecasts in 2024 Structural Representation-Guided GAN for Remote Sensing Image Cloud Removal Multispectral Airborne LiDAR Point Cloud Classification With Maximum Entropy Hierarchical Pooling A Satellite Selection Algorithm for GNSS-R InSAR Elevation Deformation Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1