Pd/AlGaN/GaN HEMT-Based Room Temperature Hydrogen Gas Sensor

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-11-04 DOI:10.1109/JSEN.2024.3487877
Vikas Pandey;Amit Kumar;Ahmed S. Razeen;Ankur Gupta;Sudhiranjan Tripathy;Mahesh Kumar
{"title":"Pd/AlGaN/GaN HEMT-Based Room Temperature Hydrogen Gas Sensor","authors":"Vikas Pandey;Amit Kumar;Ahmed S. Razeen;Ankur Gupta;Sudhiranjan Tripathy;Mahesh Kumar","doi":"10.1109/JSEN.2024.3487877","DOIUrl":null,"url":null,"abstract":"There is a burgeoning need for miniaturized sensors to detect H2 leaks throughout the entire value chain while envisioning a hydrogen economy. Developing a user-centric approach for manufacturing H2 sensors exhibiting high performance, long-term stability, and ease in data communication still poses a significant challenge. With this objective in mind, we develop a Pd/AlGaN/GaN high electron mobility transistor (HEMT)-based Internet of Thing (IoT)-enabled H2 sensing device capable of detecting extremely low concentrations (~0.5 ppm) at room temperature (RT). The fabrication process of the device involves a photolithography technique for its fabrication and functionalization of the active area between the drain and source by Pd nanoparticles using the dc sputtering method. Afterward, Pd nanoparticles were functionalized onto the HEMT surface and sputtering times were also optimized. The sensor demonstrated shallow time parameters, with a recovery time of 52 s and a response time of 29 s for 10 ppm H2 at RT respectively, with an exceptionally low detection limit of 0.5 ppm. The selectivity of the fabricated sensor was also investigated. Sensitivity toward NO\n<inline-formula> <tex-math>$_{{2},}$ </tex-math></inline-formula>\n CO\n<inline-formula> <tex-math>$_{{2},}$ </tex-math></inline-formula>\nH2 S, NH\n<inline-formula> <tex-math>$_{{3}} $ </tex-math></inline-formula>\n, and SO2 was approximately 1.5%, 4%, 2%, 3%, and 6.5%, respectively, compared to ~33% for H2. Furthermore, the sensor displayed marvelous replicability, working in a highly humid environment while operating in a temperature range of 20–\n<inline-formula> <tex-math>$75~^{\\circ }$ </tex-math></inline-formula>\nC. The sensor was incorporated into a prototype featuring a wireless capable Nano ESP32 IoT platform for real-time conditions. The reported proof of concept on the RT H2 sensor with enhanced characteristics can be envisioned for further technology demonstration.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"40409-40416"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10742269/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

There is a burgeoning need for miniaturized sensors to detect H2 leaks throughout the entire value chain while envisioning a hydrogen economy. Developing a user-centric approach for manufacturing H2 sensors exhibiting high performance, long-term stability, and ease in data communication still poses a significant challenge. With this objective in mind, we develop a Pd/AlGaN/GaN high electron mobility transistor (HEMT)-based Internet of Thing (IoT)-enabled H2 sensing device capable of detecting extremely low concentrations (~0.5 ppm) at room temperature (RT). The fabrication process of the device involves a photolithography technique for its fabrication and functionalization of the active area between the drain and source by Pd nanoparticles using the dc sputtering method. Afterward, Pd nanoparticles were functionalized onto the HEMT surface and sputtering times were also optimized. The sensor demonstrated shallow time parameters, with a recovery time of 52 s and a response time of 29 s for 10 ppm H2 at RT respectively, with an exceptionally low detection limit of 0.5 ppm. The selectivity of the fabricated sensor was also investigated. Sensitivity toward NO $_{{2},}$ CO $_{{2},}$ H2 S, NH $_{{3}} $ , and SO2 was approximately 1.5%, 4%, 2%, 3%, and 6.5%, respectively, compared to ~33% for H2. Furthermore, the sensor displayed marvelous replicability, working in a highly humid environment while operating in a temperature range of 20– $75~^{\circ }$ C. The sensor was incorporated into a prototype featuring a wireless capable Nano ESP32 IoT platform for real-time conditions. The reported proof of concept on the RT H2 sensor with enhanced characteristics can be envisioned for further technology demonstration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Pd/AlGaN/GaN HEMT 的室温氢气传感器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
Table of Contents Front Cover IEEE Sensors Journal Publication Information 2024 Reviewers List IEEE Sensors Council
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1