Label-Free Ultrasensitive Cholesterol Detection Based on SPR Optical Fiber Sensor

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-11-07 DOI:10.1109/JSEN.2024.3489622
Hongxin Zhang;Xuegang Li;Xue Zhou;Yanan Zhang
{"title":"Label-Free Ultrasensitive Cholesterol Detection Based on SPR Optical Fiber Sensor","authors":"Hongxin Zhang;Xuegang Li;Xue Zhou;Yanan Zhang","doi":"10.1109/JSEN.2024.3489622","DOIUrl":null,"url":null,"abstract":"A sensitivity-improved fiber-optic sensor based on surface plasmon resonance (SPR) is proposed, and a strategy [using polyacrylic acid (PAA) and chitosan] to fix carbon nanotubes (CNTs) on the probe to detect cholesterol is established. CNTs can improve the sensitivity of the sensor. The sensitivity of the sensor after coating with CNTs is 2437 nm/RIU, which increases by 65% compared with the uncoated sensor. \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-cyclodextrin (\n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-cd) can recognize cholesterol molecules. First, the traditional 11-mercaptoundecanoic acid (MUA) method was used to fix \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-cd on the sensor, and cholesterol sensitivity is 0.023 nm/nM in the range of 10–300 nM. Then, the Langmuir adsorption isotherm model was used to analyze the detection of cholesterol by the new method. Experiment results show that cholesterol sensitivity was 0.065 nm/nM at 10–400 nM (2.83 times than the MUA method), and the limit of quantification (LOQ) was 2.34 nM. In addition, the sensor has expanded detection range, improved the sensitivity of the sensor, and also has good stability and selectivity, paving the way for the future use of fiber sensors in cholesterol detection.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"40972-40978"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10747194/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A sensitivity-improved fiber-optic sensor based on surface plasmon resonance (SPR) is proposed, and a strategy [using polyacrylic acid (PAA) and chitosan] to fix carbon nanotubes (CNTs) on the probe to detect cholesterol is established. CNTs can improve the sensitivity of the sensor. The sensitivity of the sensor after coating with CNTs is 2437 nm/RIU, which increases by 65% compared with the uncoated sensor. $\beta $ -cyclodextrin ( $\beta $ -cd) can recognize cholesterol molecules. First, the traditional 11-mercaptoundecanoic acid (MUA) method was used to fix $\beta $ -cd on the sensor, and cholesterol sensitivity is 0.023 nm/nM in the range of 10–300 nM. Then, the Langmuir adsorption isotherm model was used to analyze the detection of cholesterol by the new method. Experiment results show that cholesterol sensitivity was 0.065 nm/nM at 10–400 nM (2.83 times than the MUA method), and the limit of quantification (LOQ) was 2.34 nM. In addition, the sensor has expanded detection range, improved the sensitivity of the sensor, and also has good stability and selectivity, paving the way for the future use of fiber sensors in cholesterol detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本文提出了一种基于表面等离子体共振(SPR)的灵敏度改进型光纤传感器,并建立了一种[使用聚丙烯酸(PAA)和壳聚糖]在探针上固定碳纳米管(CNT)以检测胆固醇的策略。碳纳米管可以提高传感器的灵敏度。涂覆 CNT 后传感器的灵敏度为 2437 nm/RIU,比未涂覆的传感器提高了 65%。 $\beta $ -环糊精($\beta $ -cd)可以识别胆固醇分子。首先,用传统的11-巯基十酸法(MUA)将$\beta $ -cd固定在传感器上,在10-300 nM范围内,胆固醇的灵敏度为0.023 nm/nM。然后,利用朗缪尔吸附等温线模型分析了新方法对胆固醇的检测。实验结果表明,在 10-400 nM 范围内,胆固醇的灵敏度为 0.065 nm/nM(是 MUA 方法的 2.83 倍),定量限(LOQ)为 2.34 nM。此外,该传感器还扩大了检测范围,提高了传感器的灵敏度,并具有良好的稳定性和选择性,为今后将纤维传感器用于胆固醇检测铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
Table of Contents Front Cover IEEE Sensors Journal Publication Information 2024 Reviewers List IEEE Sensors Council
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1