Kinetic insights into structure sensitivity of Ru catalyzed l-alanine hydrogenation to alaninol†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Reaction Chemistry & Engineering Pub Date : 2024-10-17 DOI:10.1039/D4RE00420E
Rui Song, Chang Yao, Wenhua Li, Nihong An, Yafeng Shen, Nina Fei, Xiaohu Ge, Yueqiang Cao, Xuezhi Duan and Xinggui Zhou
{"title":"Kinetic insights into structure sensitivity of Ru catalyzed l-alanine hydrogenation to alaninol†","authors":"Rui Song, Chang Yao, Wenhua Li, Nihong An, Yafeng Shen, Nina Fei, Xiaohu Ge, Yueqiang Cao, Xuezhi Duan and Xinggui Zhou","doi":"10.1039/D4RE00420E","DOIUrl":null,"url":null,"abstract":"<p >Hydrogenation achieved on supported metal catalysts is normally structure sensitive, and comprehensive understanding of such sensitivity is pivotal for gaining insights into the active sites as well as the design of catalysts. Herein, a series of differently sized Ru nanoparticles supported on carbon nanotube (CNT) were prepared and employed as catalysts for <small>L</small>-alanine hydrogenation to examine the structure sensitivity of amino acid hydrogenation. The reaction rates for <small>L</small>-alanine conversion and the formation of alaninol are demonstrated to be strongly dependent on the sizes of Ru nanoparticles, highlighting the structure sensitivity of the <small>L</small>-alanine hydrogenation. The activation energies extracted from kinetic studies are insensitive to the sizes of Ru nanoparticles on the Ru catalysts sized ≥1.3 nm with similar electronic properties, pointing to a predominant type of active site for <small>L</small>-alanine hydrogenation. By further combining model calculations with the shape of Ru nanoparticles determined by transmission electron microscopy, the Ru(101) sites are identified as the dominant active sites for <small>L</small>-alanine conversion and alaninol formation, which is further rationalized by density functional theory calculations. The kinetic insights into such structure sensitivity are believed to be important for the design and optimization of catalysts for the reaction.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 135-145"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00420e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogenation achieved on supported metal catalysts is normally structure sensitive, and comprehensive understanding of such sensitivity is pivotal for gaining insights into the active sites as well as the design of catalysts. Herein, a series of differently sized Ru nanoparticles supported on carbon nanotube (CNT) were prepared and employed as catalysts for L-alanine hydrogenation to examine the structure sensitivity of amino acid hydrogenation. The reaction rates for L-alanine conversion and the formation of alaninol are demonstrated to be strongly dependent on the sizes of Ru nanoparticles, highlighting the structure sensitivity of the L-alanine hydrogenation. The activation energies extracted from kinetic studies are insensitive to the sizes of Ru nanoparticles on the Ru catalysts sized ≥1.3 nm with similar electronic properties, pointing to a predominant type of active site for L-alanine hydrogenation. By further combining model calculations with the shape of Ru nanoparticles determined by transmission electron microscopy, the Ru(101) sites are identified as the dominant active sites for L-alanine conversion and alaninol formation, which is further rationalized by density functional theory calculations. The kinetic insights into such structure sensitivity are believed to be important for the design and optimization of catalysts for the reaction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ru 催化 l-丙氨酸加氢生成丙氨醇的结构敏感性的动力学启示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
期刊最新文献
Back cover Ultrasound-assisted condensation cyclization reaction: fast synthesis of quinazolinones from o-aminobenzamides and aldehydes under ambient conditions† Metallic sealants increase flux and change selectivity in supported molten-salt membranes. Monitoring and controlling zeolite synthesis via reactor-based solutions: a fed-batch strategy. Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1