Bulk passivation and suppressing non-radiative recombination loss in a 3D all-inorganic CsPbIBr2 perovskite solar cell via a 2D layered perovskite framework†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2024-11-19 DOI:10.1039/D4SE01437E
Tapas Das, Faisal Farooq, Parul Garg, Sakal Singla, Asim Guchhait and Ashok Bera
{"title":"Bulk passivation and suppressing non-radiative recombination loss in a 3D all-inorganic CsPbIBr2 perovskite solar cell via a 2D layered perovskite framework†","authors":"Tapas Das, Faisal Farooq, Parul Garg, Sakal Singla, Asim Guchhait and Ashok Bera","doi":"10.1039/D4SE01437E","DOIUrl":null,"url":null,"abstract":"<p >Improving perovskite film quality for reducing non-radiative recombination centers is one of the key aspects of designing efficient and stable perovskite solar cells (PSCs). In this work, we fabricated a high-performing and ambient stable CsPbIBr<small><sub>2</sub></small>-based PSC by incorporating a 2D perovskite framework within a 3D perovskite structure. An optimum amount of 2D doping can anchor the grain boundaries to improve the crystallinity and grain sizes and ultimately suppress non-radiative recombination centers within the perovskite. The solution-processed perovskite film with the structural formula ((PEA)<small><sub>2</sub></small>PbI<small><sub>4</sub></small>)<small><sub><em>X</em></sub></small>(CsPbIBr<small><sub>2</sub></small>)<small><sub>1−<em>X</em></sub></small> for <em>X</em> = 0.02 exhibited an improved average grain size of 853.38 ± 0.18 nm in comparison to 350.43 ± 0.09 nm of pristine CsPbIBr<small><sub>2</sub></small> thin films. The bulk passivation within the perovskite was supported by the X-ray diffraction, steady-state, and time-resolved photoluminescence results. We fabricated a PSC with the device structure FTO/c-TiO<small><sub>2</sub></small>/m-TiO<small><sub>2</sub></small>/(PEA)<small><sub>2</sub></small>PbI<small><sub>4</sub></small>)<small><sub><em>X</em></sub></small>(CsPbIBr<small><sub>2</sub></small>)<small><sub>1−<em>X</em></sub></small>/Spiro-OMeTAD/Ag, and achieved a power conversion efficiency (PCE) of 10.13% under ambient conditions with <em>X</em> = 0.02 and only 8.08% PCE for the pristine 3D perovskite (<em>X</em> = 0) device. The devices with 2D incorporation showed excellent ambient stability without any encapsulation and retained 80% of their initial PCE (T<small><sub>80</sub></small>) after 500 hours of ambient storage, whereas the device with pure 3D perovskite retained only 20% of its initial PCE after 400 hours of ambient storage. Simulation results, in combination with the experimental data, show that a reduced density of recombination centers resulted in much improved device performance.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 1","pages":" 269-279"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01437e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Improving perovskite film quality for reducing non-radiative recombination centers is one of the key aspects of designing efficient and stable perovskite solar cells (PSCs). In this work, we fabricated a high-performing and ambient stable CsPbIBr2-based PSC by incorporating a 2D perovskite framework within a 3D perovskite structure. An optimum amount of 2D doping can anchor the grain boundaries to improve the crystallinity and grain sizes and ultimately suppress non-radiative recombination centers within the perovskite. The solution-processed perovskite film with the structural formula ((PEA)2PbI4)X(CsPbIBr2)1−X for X = 0.02 exhibited an improved average grain size of 853.38 ± 0.18 nm in comparison to 350.43 ± 0.09 nm of pristine CsPbIBr2 thin films. The bulk passivation within the perovskite was supported by the X-ray diffraction, steady-state, and time-resolved photoluminescence results. We fabricated a PSC with the device structure FTO/c-TiO2/m-TiO2/(PEA)2PbI4)X(CsPbIBr2)1−X/Spiro-OMeTAD/Ag, and achieved a power conversion efficiency (PCE) of 10.13% under ambient conditions with X = 0.02 and only 8.08% PCE for the pristine 3D perovskite (X = 0) device. The devices with 2D incorporation showed excellent ambient stability without any encapsulation and retained 80% of their initial PCE (T80) after 500 hours of ambient storage, whereas the device with pure 3D perovskite retained only 20% of its initial PCE after 400 hours of ambient storage. Simulation results, in combination with the experimental data, show that a reduced density of recombination centers resulted in much improved device performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高透辉石薄膜质量以减少非辐射重组中心是设计高效稳定的透辉石太阳能电池(PSC)的关键之一。在这项工作中,我们在三维包晶结构中加入了二维包晶框架,从而制造出了一种高性能、环境稳定的基于 CsPbIBr2 的 PSC。最佳的二维掺杂量可以锚定晶界,从而改善结晶度和晶粒尺寸,并最终抑制包晶内部的非辐射重组中心。在 X = 0.02 时,结构式为 ((PEA)2PbI4)X(CsPbIBr2)1-X 的溶液加工透辉石薄膜的平均晶粒大小为 853.38 ± 0.18 nm,与原始 CsPbIBr2 薄膜的 350.43 ± 0.09 nm 相比有所改善。X 射线衍射、稳态和时间分辨光致发光结果都证明了包晶内部的体钝化。我们制造出了器件结构为 FTO/c-TiO2/m-TiO2/(PEA)2PbI4)X(CsPbIBr2)1-X/Spiro-OMeTAD/Ag的 PSC,并在 X = 0.02 的环境条件下实现了 10.13% 的功率转换效率 (PCE),而原始三维包晶(X = 0)器件的 PCE 仅为 8.08%。掺入二维元素的器件在没有任何封装的情况下表现出极佳的环境稳定性,在环境储存 500 小时后仍能保持 80% 的初始 PCE (T80),而纯三维包晶器件在环境储存 400 小时后仅能保持 20% 的初始 PCE。模拟结果与实验数据相结合表明,降低重组中心的密度可大大提高器件的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Back cover Back cover Interfacial engineering of a bifunctional electrocatalyst with outstanding catalytic performance, high intrinsic activity and solar-to-hydrogen conversion efficiency† Fluorine-rich Schiff base ligand derived Fe/N–C–F and Co/N–C–F catalysts for the oxygen reduction reaction: synthesis, experimental validation, and DFT insights† Electrocatalytic conversion of biomass-derived oxygenated aromatics to cycloalkanes†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1