Experimental Investigation on Tribological Performance of TiB2-CoTi Composite Coating Fabricated on AISI 304 Stainless Steel by Argon Arc Cladding Technique
{"title":"Experimental Investigation on Tribological Performance of TiB2-CoTi Composite Coating Fabricated on AISI 304 Stainless Steel by Argon Arc Cladding Technique","authors":"Ravi Kumar, Anil Kumar Das","doi":"10.1007/s11666-024-01890-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, TiB<sub>2</sub>-CoTi composite coatings were fabricated on AISI 304 stainless steel (SS) substrate through argon arc cladding (AAC) technique. The effects of AAC processing currents and weight percentage of titanium (Ti) content on mechanical and wear rate of the coatings have been examined. Microstructural and element distribution maps, as well as phase analysis of the produced coating, were determined using field emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Results revealed that the coating exhibited good metallurgical bond to the substrate with columnar and network-shaped dendrite structure. The top surface of composite coatings was mainly comprised of TiB<sub>2</sub>, NiTi, TiB, Co<sub>3</sub>Ti, Co<sub>2</sub>B, CoTi, and α-Ti phases. Components of the composite phases were beneficial for improved microhardness and reduced the wear rates. The maximum average microhardness of TiB<sub>2</sub>-CoTi composite coating was achieved as 1582 HV<sub>0.1</sub>. This is significantly seven times higher than that of AISI 304SS substrate hardness (223 HV<sub>0.1</sub>). The wear rate of TiB<sub>2</sub>-CoTi coating was determined to be 2.53 × 10<sup>−8</sup> g/N m, whereas average wear rate of AISI 304SS substrate was 24.39 × 10<sup>−8</sup> g/N m. The wear resistance of the TiB<sub>2</sub>-CoTi coating was 9 times higher than that of AISI 304 SS substrate. Its durability and performance under challenging conditions suggest that it is suitable for applications that demand superior durability and performance.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 8","pages":"2760 - 2783"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01890-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, TiB2-CoTi composite coatings were fabricated on AISI 304 stainless steel (SS) substrate through argon arc cladding (AAC) technique. The effects of AAC processing currents and weight percentage of titanium (Ti) content on mechanical and wear rate of the coatings have been examined. Microstructural and element distribution maps, as well as phase analysis of the produced coating, were determined using field emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Results revealed that the coating exhibited good metallurgical bond to the substrate with columnar and network-shaped dendrite structure. The top surface of composite coatings was mainly comprised of TiB2, NiTi, TiB, Co3Ti, Co2B, CoTi, and α-Ti phases. Components of the composite phases were beneficial for improved microhardness and reduced the wear rates. The maximum average microhardness of TiB2-CoTi composite coating was achieved as 1582 HV0.1. This is significantly seven times higher than that of AISI 304SS substrate hardness (223 HV0.1). The wear rate of TiB2-CoTi coating was determined to be 2.53 × 10−8 g/N m, whereas average wear rate of AISI 304SS substrate was 24.39 × 10−8 g/N m. The wear resistance of the TiB2-CoTi coating was 9 times higher than that of AISI 304 SS substrate. Its durability and performance under challenging conditions suggest that it is suitable for applications that demand superior durability and performance.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.