Thermalization and non-monotonic entanglement growth in an exactly solvable model

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS The European Physical Journal C Pub Date : 2024-12-19 DOI:10.1140/epjc/s10052-024-13678-6
Shruti Paranjape, Nilakash Sorokhaibam
{"title":"Thermalization and non-monotonic entanglement growth in an exactly solvable model","authors":"Shruti Paranjape,&nbsp;Nilakash Sorokhaibam","doi":"10.1140/epjc/s10052-024-13678-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study quantum quenches and subsequent non-equilibrium dynamics of free Dirac fermions in 1 + 1 spacetime dimensions using time dependent mass. The final state is a normalized boundary state which is called generalized Calabrese-Cardy (gCC) state and the system thermalizes to a generalized Gibb’s Ensemble(GGE). We can also tune the initial states so that the final states are exact Calabrese-Cardy (CC) state and special gCC states. The system in the CC state thermalizes to a Gibb’s ensemble. We derive closed-form analytic expressions for the growth of entanglement entropy of subsystems consisting of arbitrary number of disjoint intervals in CC state. We show that the entanglement entropy of a single interval grows monotonically before saturation. In case of certain gCC states, for particular charges, the entanglement entropy of a single interval grows non-monotonically when the effective chemical potential is increased beyond a critical value. We argue that the non-monotonic growth of entanglement entropy is a boundary effect which arises due to increase in long range correlation and decrease in short range correlation at early times.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13678-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13678-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

We study quantum quenches and subsequent non-equilibrium dynamics of free Dirac fermions in 1 + 1 spacetime dimensions using time dependent mass. The final state is a normalized boundary state which is called generalized Calabrese-Cardy (gCC) state and the system thermalizes to a generalized Gibb’s Ensemble(GGE). We can also tune the initial states so that the final states are exact Calabrese-Cardy (CC) state and special gCC states. The system in the CC state thermalizes to a Gibb’s ensemble. We derive closed-form analytic expressions for the growth of entanglement entropy of subsystems consisting of arbitrary number of disjoint intervals in CC state. We show that the entanglement entropy of a single interval grows monotonically before saturation. In case of certain gCC states, for particular charges, the entanglement entropy of a single interval grows non-monotonically when the effective chemical potential is increased beyond a critical value. We argue that the non-monotonic growth of entanglement entropy is a boundary effect which arises due to increase in long range correlation and decrease in short range correlation at early times.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精确可解模型中的热化和非单调纠缠增长
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
期刊最新文献
The structure of the \(f_0(980)\) from system size dependent hadronic resonance ratios in p + p, p + Pb, and Pb + Pb collisions at the LHC Possible signal of an exotic \(I=1\), \(J=2\) state in the \(B \rightarrow D^{*-}D^+K^+\) reaction Astrophysical insights into magnetic Penrose process around parameterized Konoplya–Rezzolla–Zhidenko black hole Dark matter influences on wormhole stability in de Rham–Gabadadze–Tolley like massive gravity Testing loop quantum gravity by quasi-periodic oscillations: rotating blackholes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1