Tursunali Xamidov, Sanjar Shaymatov, Pankaj Sheoran, Bobomurat Ahmedov
{"title":"Astrophysical insights into magnetic Penrose process around parameterized Konoplya–Rezzolla–Zhidenko black hole","authors":"Tursunali Xamidov, Sanjar Shaymatov, Pankaj Sheoran, Bobomurat Ahmedov","doi":"10.1140/epjc/s10052-024-13658-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the parameterized Konoplya–Rezzolla–Zhidenko (KRZ) black hole (BH) spacetime in the presence of an external asymptotically uniform magnetic field. We first examine the innermost stable circular orbit (ISCO) radii for both neutral and charged test particles, demonstrating that the deformation parameters, <span>\\(\\delta _1\\)</span> and <span>\\(\\delta _2\\)</span>, reduce the ISCO values. Subsequently, we assess the energy efficiency of the magnetic Penrose process (MPP) for an axially symmetric parameterized BH, analyzing the effects of the deformation parameters and the magnetic field on the energy extraction process. Our findings indicate that the rotational deformation parameter <span>\\(\\delta _2\\)</span> is crucial for the efficiency of energy extraction from the BH. The synergy between the rotational deformation parameter and the magnetic field significantly boosts the energy extraction efficiency, with values exceeding <span>\\(100\\%\\)</span>. Interestingly, for extremal BHs with negative <span>\\(\\delta _2\\)</span> values, the energy efficiency increases, in contrast to Kerr BHs where the MPP effect diminishes. Additionally, we explore the astrophysical implications of the MPP by deriving the maximum energy of a proton escaping from the KRZ parameterized BH due to the beta decay of a free neutron near the horizon. Our results show that negative <span>\\(\\delta _2\\)</span> values require stronger magnetic fields to achieve equivalent energy levels for high-energy protons, providing deeper insights into high-energy astrophysical phenomena around the parameterized BH.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13658-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13658-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate the parameterized Konoplya–Rezzolla–Zhidenko (KRZ) black hole (BH) spacetime in the presence of an external asymptotically uniform magnetic field. We first examine the innermost stable circular orbit (ISCO) radii for both neutral and charged test particles, demonstrating that the deformation parameters, \(\delta _1\) and \(\delta _2\), reduce the ISCO values. Subsequently, we assess the energy efficiency of the magnetic Penrose process (MPP) for an axially symmetric parameterized BH, analyzing the effects of the deformation parameters and the magnetic field on the energy extraction process. Our findings indicate that the rotational deformation parameter \(\delta _2\) is crucial for the efficiency of energy extraction from the BH. The synergy between the rotational deformation parameter and the magnetic field significantly boosts the energy extraction efficiency, with values exceeding \(100\%\). Interestingly, for extremal BHs with negative \(\delta _2\) values, the energy efficiency increases, in contrast to Kerr BHs where the MPP effect diminishes. Additionally, we explore the astrophysical implications of the MPP by deriving the maximum energy of a proton escaping from the KRZ parameterized BH due to the beta decay of a free neutron near the horizon. Our results show that negative \(\delta _2\) values require stronger magnetic fields to achieve equivalent energy levels for high-energy protons, providing deeper insights into high-energy astrophysical phenomena around the parameterized BH.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.