Guiwei Li, Hua Li, Qingping Liu, Haolan Sun, Yuhai Nie, Qi Li, Wenzheng Wu, Shengbo Ge, Ke Li, Ji Zhao, Luquan Ren
{"title":"4D printing of polycarbonate ternary composites and the biomimetic folding deployment mechanisms","authors":"Guiwei Li, Hua Li, Qingping Liu, Haolan Sun, Yuhai Nie, Qi Li, Wenzheng Wu, Shengbo Ge, Ke Li, Ji Zhao, Luquan Ren","doi":"10.1007/s42114-024-01090-3","DOIUrl":null,"url":null,"abstract":"<p>4D printing of shape-morphing systems have promising application prospects in satellites which are suffering from the complex structure of satellite solar panels, unreliable electric driving systems, and lightweight structural requirements. However, the current investigations of 4D printing are focused on shape memory materials with the lower thermal deformation temperature, which limits their practical applications in the aerospace field. Herein, the polycarbonate (PC) is selected as the base material with a thermal deformation temperature of 150 °C, and combining with carbon fiber (CF) and carbon nanotubes (CNTs). The dual percolated PC/CNT/CF ternary composite with “point + line” conductive pathways is fabricated. The material demonstrates superior electrical conductivity and shape memory behavior under a 50 V direct current voltage. The “point + line” conductive pathway exhibits excellent electrical performance without hindering the shape memory performance of PC. The PC-3%CNT-3%CF specimen reaches a temperature of 150 °C at both ends within 1 min under a voltage of 50 V. The U-shaped shape memory samples are designed to increase the shape recovery properties, and a series of biomimetic models are also developed to illustrate the shape-morphing properties of 4D printing PC composites. The 20 consecutive cycles of shape memory experiments confirm the reliability of the composites. These findings highlight the broad potential applications of the material in the aerospace field.</p>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01090-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
4D printing of shape-morphing systems have promising application prospects in satellites which are suffering from the complex structure of satellite solar panels, unreliable electric driving systems, and lightweight structural requirements. However, the current investigations of 4D printing are focused on shape memory materials with the lower thermal deformation temperature, which limits their practical applications in the aerospace field. Herein, the polycarbonate (PC) is selected as the base material with a thermal deformation temperature of 150 °C, and combining with carbon fiber (CF) and carbon nanotubes (CNTs). The dual percolated PC/CNT/CF ternary composite with “point + line” conductive pathways is fabricated. The material demonstrates superior electrical conductivity and shape memory behavior under a 50 V direct current voltage. The “point + line” conductive pathway exhibits excellent electrical performance without hindering the shape memory performance of PC. The PC-3%CNT-3%CF specimen reaches a temperature of 150 °C at both ends within 1 min under a voltage of 50 V. The U-shaped shape memory samples are designed to increase the shape recovery properties, and a series of biomimetic models are also developed to illustrate the shape-morphing properties of 4D printing PC composites. The 20 consecutive cycles of shape memory experiments confirm the reliability of the composites. These findings highlight the broad potential applications of the material in the aerospace field.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.