Modeling the electron density distribution with a nonthermal-nonextensive function for nonlinear laser–plasma interactions

IF 2 3区 物理与天体物理 Q3 OPTICS Applied Physics B Pub Date : 2024-12-18 DOI:10.1007/s00340-024-08369-9
Lyes Djebarni, Fayçal Hadj-Larbi, Djamila Bennaceur-Doumaz
{"title":"Modeling the electron density distribution with a nonthermal-nonextensive function for nonlinear laser–plasma interactions","authors":"Lyes Djebarni,&nbsp;Fayçal Hadj-Larbi,&nbsp;Djamila Bennaceur-Doumaz","doi":"10.1007/s00340-024-08369-9","DOIUrl":null,"url":null,"abstract":"<div><p>The mixed nonthermal-nonextensive electron density distribution function is increasingly used to describe various types of plasmas, but to the best of our knowledge, there is no report on the use of this new kind of functions to describe nonlinear laser-collisionless plasma interaction with the approach proposed here. In this contribution, we generalized the Tribeche-Tsallis-Cairns hybrid distribution to describe our plasma by the above-mentioned function, and nonextensive ions. By using the Maxwell equations, the relativistic two-fluid model and the slowly-varying-amplitude approximation, we derived equations for the description of the nonlinear dynamics of a circularly-polarized laser-beam interacting with collisionless non-Maxwellian magnetized plasma. Taking into account the ponderomotive force, the external magnetic field, and other plasma parameters, we found that the latter cause and affect some nonlinear phenomena in the considered plasma. These phenomena include the modulational instability (MI), the envelope solitary waves, and the laser-beam self-focusing. The present work investigates analytically and numerically these nonlinear phenomena. The results show that the existence of the electron density, with a high-energy particles hybrid distribution function tail, and other factors play an essential role in the plasma nonlinearity features. We noted that the more the electron and ion density distributions tend to the Maxwellian form, the nonlinearity and the MI’s growth rate increase, the envelope solitary waves amplitude decreases, and the laser-beam self-focusing property enhances. Our contribution generalizes some previous models describing laser-plasma interactions, and suggests that the above-mentioned function could be a good candidate to describe simulations and experiments involving nonlinear laser-collisionless plasma interactions.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-024-08369-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The mixed nonthermal-nonextensive electron density distribution function is increasingly used to describe various types of plasmas, but to the best of our knowledge, there is no report on the use of this new kind of functions to describe nonlinear laser-collisionless plasma interaction with the approach proposed here. In this contribution, we generalized the Tribeche-Tsallis-Cairns hybrid distribution to describe our plasma by the above-mentioned function, and nonextensive ions. By using the Maxwell equations, the relativistic two-fluid model and the slowly-varying-amplitude approximation, we derived equations for the description of the nonlinear dynamics of a circularly-polarized laser-beam interacting with collisionless non-Maxwellian magnetized plasma. Taking into account the ponderomotive force, the external magnetic field, and other plasma parameters, we found that the latter cause and affect some nonlinear phenomena in the considered plasma. These phenomena include the modulational instability (MI), the envelope solitary waves, and the laser-beam self-focusing. The present work investigates analytically and numerically these nonlinear phenomena. The results show that the existence of the electron density, with a high-energy particles hybrid distribution function tail, and other factors play an essential role in the plasma nonlinearity features. We noted that the more the electron and ion density distributions tend to the Maxwellian form, the nonlinearity and the MI’s growth rate increase, the envelope solitary waves amplitude decreases, and the laser-beam self-focusing property enhances. Our contribution generalizes some previous models describing laser-plasma interactions, and suggests that the above-mentioned function could be a good candidate to describe simulations and experiments involving nonlinear laser-collisionless plasma interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对非线性激光-等离子体相互作用,用非热-非扩展函数模拟电子密度分布
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics B
Applied Physics B 物理-光学
CiteScore
4.00
自引率
4.80%
发文量
202
审稿时长
3.0 months
期刊介绍: Features publication of experimental and theoretical investigations in applied physics Offers invited reviews in addition to regular papers Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field. In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.
期刊最新文献
Laser-induced damage threshold of sulfur-containing crystals of barium chalcogenides Unveiling geometric quantum resources and uncertainty relation in a two-dimensional electron gas Diversity and manipulability of pump-probe absorption spectra for a degenerate two-level system Modeling the electron density distribution with a nonthermal-nonextensive function for nonlinear laser–plasma interactions High-order harmonic generation in Bi and Pb plasmas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1