Microstructure and Deformation Behavior of Novel Metal–Ceramic Laminated Composites Ta/Ti3Al(Si)C2–TiC

A. V. Abdulmenova, E. B. Kashkarov, D. G. Krotkevich, N. Travitzky
{"title":"Microstructure and Deformation Behavior of Novel Metal–Ceramic Laminated Composites Ta/Ti3Al(Si)C2–TiC","authors":"A. V. Abdulmenova,&nbsp;E. B. Kashkarov,&nbsp;D. G. Krotkevich,&nbsp;N. Travitzky","doi":"10.1134/S1027451024700897","DOIUrl":null,"url":null,"abstract":"<p>New metal–ceramic laminated composites Ta/Ti<sub>3</sub>Al(Si)C<sub>2</sub>–TiC were obtained by spark plasma sintering. The samples were synthesized at a temperature of 1250°C and a pressure of 50 MPa for 5 min. For formation of the composites, preceramic paper with a powder filler based on the MAX phase of Ti<sub>3</sub>Al(Si)C<sub>2</sub>, as well as metal foils made of tantalum, were used. The phase composition, microstructure, and elemental composition were analyzed by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy, respectively. It was found that as a result of sintering, dense multilayer composites were formed, consisting of tantalum metal layers, ceramic layers containing Ti<sub>3</sub>Al(Si)C<sub>2</sub>, TiC, and Al<sub>2</sub>O<sub>3</sub> phases, as well as reaction layers ~13 μm thick at the metal–ceramic interface enriched with Ta, Al, and Si. Based on the mechanical test data, the ultimate bending strength of the obtained composites was determined (σ<sub>bs</sub> = ~430 MPa). Metal–ceramic laminated composites with a refractory tantalum layer were shown to exhibit a ductile fracture mechanism accompanied by a more than fourfold increase in absolute deformation compared to a Ti<sub>3</sub>Al(Si)C<sub>2</sub>-based ceramic composite. This is achieved due to deflection, branching of cracks at the metal–ceramic interface, and plastic deformation of tantalum layers.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 5","pages":"1105 - 1110"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024700897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

New metal–ceramic laminated composites Ta/Ti3Al(Si)C2–TiC were obtained by spark plasma sintering. The samples were synthesized at a temperature of 1250°C and a pressure of 50 MPa for 5 min. For formation of the composites, preceramic paper with a powder filler based on the MAX phase of Ti3Al(Si)C2, as well as metal foils made of tantalum, were used. The phase composition, microstructure, and elemental composition were analyzed by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy, respectively. It was found that as a result of sintering, dense multilayer composites were formed, consisting of tantalum metal layers, ceramic layers containing Ti3Al(Si)C2, TiC, and Al2O3 phases, as well as reaction layers ~13 μm thick at the metal–ceramic interface enriched with Ta, Al, and Si. Based on the mechanical test data, the ultimate bending strength of the obtained composites was determined (σbs = ~430 MPa). Metal–ceramic laminated composites with a refractory tantalum layer were shown to exhibit a ductile fracture mechanism accompanied by a more than fourfold increase in absolute deformation compared to a Ti3Al(Si)C2-based ceramic composite. This is achieved due to deflection, branching of cracks at the metal–ceramic interface, and plastic deformation of tantalum layers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型金属陶瓷层压复合材料 Ta/Ti3Al(Si)C2-TiC 的微观结构和变形行为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
25.00%
发文量
144
审稿时长
3-8 weeks
期刊介绍: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.
期刊最新文献
Surface Modification of Polytetrafluoroethylene by Atmospheric-Pressure Plasma Jets Evaluation of the Component Composition and Thickness of the Modified Layer of Tungsten and Tantalum Carbides during Stationary Sputtering by Helium Ions Bombardment Increasing the Service Life of Main Pipelines Using a Composite Waterproofing Material with Increased Durability Influence of Mechanical Damage to an Interferometer Block on Its X-Ray Diffraction Pattern Effect of Exposure to Nonthermal Atmospheric Pressure Plasma on Surface Modification of Cereal Seeds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1