A Multispecies Reactive Transport Model of Sequential Bioremediation and Pump-and-treat in a Chloroethenes-polluted Aquifer

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2024-12-18 DOI:10.1007/s11270-024-07657-6
Giulia Casiraghi, Daniele Pedretti, Giovanni P. Beretta, Lucia Cavalca, Simone Varisco, Marco Masetti
{"title":"A Multispecies Reactive Transport Model of Sequential Bioremediation and Pump-and-treat in a Chloroethenes-polluted Aquifer","authors":"Giulia Casiraghi,&nbsp;Daniele Pedretti,&nbsp;Giovanni P. Beretta,&nbsp;Lucia Cavalca,&nbsp;Simone Varisco,&nbsp;Marco Masetti","doi":"10.1007/s11270-024-07657-6","DOIUrl":null,"url":null,"abstract":"<div><p>Reactive transport models (RTMs) are widely adopted supporting tools for the design and management of aquifer <i>in-situ</i> bioremediation systems. However, their use has not been yet fully demonstrated for the design and management of operational-scale sequential bioremediation system (SBSs). In this work, a multispecies RTM was developed to reproduce an SBS coupled to a pump-and-treat (P&amp;T) system in a chloroethene-polluted alluvial aquifer of Northern Italy. It is one of the first-ever documented applications of multispecies process-based RTM to simulate an operational-scale SBS. Two different model configurations were created to study the importance of adopting a more homogeneous or heterogeneous spatial distribution of transport parameters. The first configuration embedded three different reaction zones (RZs), each one described by spatially—invariant first-order reaction rates (<span>\\(k\\)</span>) simulating parent-daughter transformation of chloroethenes (PCE→TCE→DCE→VC). The second configuration embedded a spatially variant distribution of reaction rates within the three RZs, resulting in a more heterogeneous parametrization. Given the larger number of fitting parameters, the more heterogeneous model provided a better match of the field observations. Compared to it, calibrated <span>\\(k\\)</span> obtained from the more homogeneous model were largely underestimated for more-chlorinated compounds (PCE, TCE) and overestimated for less-chlorinated compounds (DCE, VC). The heterogeneous model showed that the capacity of the SBS to degrade the chemicals varied significantly across the different site areas, a feature not captured by the homogeneous model, and which could have important implications regarding the potential closure of selected P&amp;T wells.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07657-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive transport models (RTMs) are widely adopted supporting tools for the design and management of aquifer in-situ bioremediation systems. However, their use has not been yet fully demonstrated for the design and management of operational-scale sequential bioremediation system (SBSs). In this work, a multispecies RTM was developed to reproduce an SBS coupled to a pump-and-treat (P&T) system in a chloroethene-polluted alluvial aquifer of Northern Italy. It is one of the first-ever documented applications of multispecies process-based RTM to simulate an operational-scale SBS. Two different model configurations were created to study the importance of adopting a more homogeneous or heterogeneous spatial distribution of transport parameters. The first configuration embedded three different reaction zones (RZs), each one described by spatially—invariant first-order reaction rates (\(k\)) simulating parent-daughter transformation of chloroethenes (PCE→TCE→DCE→VC). The second configuration embedded a spatially variant distribution of reaction rates within the three RZs, resulting in a more heterogeneous parametrization. Given the larger number of fitting parameters, the more heterogeneous model provided a better match of the field observations. Compared to it, calibrated \(k\) obtained from the more homogeneous model were largely underestimated for more-chlorinated compounds (PCE, TCE) and overestimated for less-chlorinated compounds (DCE, VC). The heterogeneous model showed that the capacity of the SBS to degrade the chemicals varied significantly across the different site areas, a feature not captured by the homogeneous model, and which could have important implications regarding the potential closure of selected P&T wells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氯乙烷污染含水层中顺序生物修复和泵送处理的多物种反应迁移模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
Importance of Quality of Groundwater Resources in Transboundary River with Emphasis on Hydro-geochemical Properties, Case study: Aras Transboundary River (Northern Iran) Waste Valorisation and Contribution to the Circular Economy: The Evaluation of Water Treatment Sludge as a Phosphorus Adsorption Material and its Potential for Agricultural Reuse Coagulation-Flocculation/Pyrolysis Integrated System for Dye-Laden Wastewater Treatment: A Techno-Economic and Sustainable Approach Synthesis and Characterization of Efficient Adsorbents for Methylene Blue Based on Graphene Oxide/β-cyclodextrin Composites A Multispecies Reactive Transport Model of Sequential Bioremediation and Pump-and-treat in a Chloroethenes-polluted Aquifer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1