Influence of Herbal Tea Ingredients on Bioaccessibility of Mercury and Arsenic

IF 2.8 4区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Food Biophysics Pub Date : 2024-12-18 DOI:10.1007/s11483-024-09918-7
Guodong Li, Fengjiao Liu, Yuxian Chen, Wenbo Zhao, Wen Liao
{"title":"Influence of Herbal Tea Ingredients on Bioaccessibility of Mercury and Arsenic","authors":"Guodong Li,&nbsp;Fengjiao Liu,&nbsp;Yuxian Chen,&nbsp;Wenbo Zhao,&nbsp;Wen Liao","doi":"10.1007/s11483-024-09918-7","DOIUrl":null,"url":null,"abstract":"<div><p>Mercury (Hg) and arsenic (As) are highly toxic metal(loid)s, and the consumption of food (particularly rice and seafood) represents a significant pathway for human exposure to these elements. Dietary habits, such as the intake of herbal tea and soup, may profoundly influence this exposure, which can be assessed through bioaccessibility. This study investigated the effects of various herbal tea ingredients on the bioaccessibility of Hg and As. Our findings revealed that certain ingredients significantly reduced Hg bioaccessibility from food, with reductions ranging from 30.1 to 90.2%; chrysanthemum exhibited the highest efficacy, followed closely by honeysuckle. Notably, inorganic mercury (iHg) bioaccessibility was more susceptible to reduction than methylmercury (MeHg) when co-digested with herbal tea ingredients. Only glabrous greenbrier and abrus herb effectively reduced bioaccessible As from food, with bioaccessibility decreasing in the following order: inorganic As (iAs) &gt; dimethylarsinic acid (DMA) &gt; arsenobetaine (AsB). These findings suggest that specific ingredients can mitigate human exposure to Hg and As, highlighting the necessity for further research into their chemical properties and functional implications.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09918-7","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mercury (Hg) and arsenic (As) are highly toxic metal(loid)s, and the consumption of food (particularly rice and seafood) represents a significant pathway for human exposure to these elements. Dietary habits, such as the intake of herbal tea and soup, may profoundly influence this exposure, which can be assessed through bioaccessibility. This study investigated the effects of various herbal tea ingredients on the bioaccessibility of Hg and As. Our findings revealed that certain ingredients significantly reduced Hg bioaccessibility from food, with reductions ranging from 30.1 to 90.2%; chrysanthemum exhibited the highest efficacy, followed closely by honeysuckle. Notably, inorganic mercury (iHg) bioaccessibility was more susceptible to reduction than methylmercury (MeHg) when co-digested with herbal tea ingredients. Only glabrous greenbrier and abrus herb effectively reduced bioaccessible As from food, with bioaccessibility decreasing in the following order: inorganic As (iAs) > dimethylarsinic acid (DMA) > arsenobetaine (AsB). These findings suggest that specific ingredients can mitigate human exposure to Hg and As, highlighting the necessity for further research into their chemical properties and functional implications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凉茶成分对汞和砷生物可及性的影响
汞(Hg)和砷(As)是剧毒金属(类金属),食用食物(特别是大米和海鲜)是人类接触这些元素的重要途径。饮食习惯,如喝凉茶和凉汤,可能会深刻影响这种接触,这可以通过生物可及性来评估。研究了不同凉茶成分对汞和砷生物可及性的影响。研究结果表明,某些成分显著降低了食品中汞的生物可及性,降低幅度在30.1%至90.2%之间;菊花的药效最高,金银花次之。值得注意的是,无机汞(iHg)的生物可及性比甲基汞(MeHg)更容易被降低。只有无毛绿野蔷薇和杜仲能有效降低食品中砷的生物可达性,其生物可达性顺序为:无机砷(iAs) >;二甲基硅酸(DMA) >;砷甜菜碱(AsB)。这些发现表明,特定成分可以减轻人类对汞和砷的暴露,强调了对其化学性质和功能影响进行进一步研究的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Biophysics
Food Biophysics 工程技术-食品科技
CiteScore
5.80
自引率
3.30%
发文量
58
审稿时长
1 months
期刊介绍: Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell. A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.
期刊最新文献
Multivariate Optimization of Chitosan/Starch/Aloe Vera Packaging Film for Beef Fillet Preservation: Insights into Interaction Mechanisms and Evaluation of Sustainability Metrics Effect of Hydrocolloids on the Pasting and Retrogradation of Starch with Different Amylose/Amylopectin Ratios Effect of Ultrasonic Treatment on Functional Properties and Emulsion Stability of Sweet Potato Protein Design and Application of Radiofrequency and Nanocomposite Packaging for Preservation of Habanero Pepper: Effects of Frequency, Processing Time, and Film Thickness Impact of Plant Protein Extraction and Conjugation with Polyphenols on Physicochemical, Structural, and Rheological Properties of Plant-Based Food Emulsions and Gels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1