Said Ouala, Bertrand Chapron, Fabrice Collard, Lucile Gaultier, Ronan Fablet
{"title":"Online calibration of deep learning sub-models for hybrid numerical modeling systems","authors":"Said Ouala, Bertrand Chapron, Fabrice Collard, Lucile Gaultier, Ronan Fablet","doi":"10.1038/s42005-024-01880-7","DOIUrl":null,"url":null,"abstract":"Defining end-to-end (or online) training schemes for the calibration of neural sub-models in hybrid systems requires working with an optimization problem that involves the solver of the physical equations. Online learning methodologies thus require the numerical model to be differentiable, which is not the case for most modeling systems. To overcome this, we present an efficient and practical online learning approach for hybrid systems. The method, called EGA for Euler Gradient Approximation, assumes an additive neural correction to the physical model, and an explicit Euler approximation of the gradients. We demonstrate that the EGA converges to the exact gradients in the limit of infinitely small time steps. Numerical experiments show significant improvements over offline learning, highlighting the potential of end-to-end learning for hybrid modeling. End-to-end learning in hybrid numerical models involves solving an optimization problem that integrates the model’s solver. In many fields, these solvers are written in low-abstraction programming languages that lack automatic differentiation. This work presents a practical approach to solving the optimization problem by efficiently approximating the gradient of the end-to-end objective function.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-15"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01880-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01880-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Defining end-to-end (or online) training schemes for the calibration of neural sub-models in hybrid systems requires working with an optimization problem that involves the solver of the physical equations. Online learning methodologies thus require the numerical model to be differentiable, which is not the case for most modeling systems. To overcome this, we present an efficient and practical online learning approach for hybrid systems. The method, called EGA for Euler Gradient Approximation, assumes an additive neural correction to the physical model, and an explicit Euler approximation of the gradients. We demonstrate that the EGA converges to the exact gradients in the limit of infinitely small time steps. Numerical experiments show significant improvements over offline learning, highlighting the potential of end-to-end learning for hybrid modeling. End-to-end learning in hybrid numerical models involves solving an optimization problem that integrates the model’s solver. In many fields, these solvers are written in low-abstraction programming languages that lack automatic differentiation. This work presents a practical approach to solving the optimization problem by efficiently approximating the gradient of the end-to-end objective function.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.