Strong El Niño and La Niña precipitation—sea surface temperature sensitivity under a carbon removal scenario

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Communications Earth & Environment Pub Date : 2024-12-19 DOI:10.1038/s43247-024-01958-8
Chao Liu, Soon-Il An, Zixiang Yan, Soong-Ki Kim, Seungmok Paik
{"title":"Strong El Niño and La Niña precipitation—sea surface temperature sensitivity under a carbon removal scenario","authors":"Chao Liu, Soon-Il An, Zixiang Yan, Soong-Ki Kim, Seungmok Paik","doi":"10.1038/s43247-024-01958-8","DOIUrl":null,"url":null,"abstract":"El Niño-Southern Oscillation-induced tropical Pacific precipitation anomalies have global impacts and will intensify under greenhouse warming, but the potential for mitigating these changes is less understood. Here, we identify distinct hysteresis features in the precipitation-sea surface temperature sensitivity between strong El Niño and La Niña phases using a large ensemble carbon removal numerical simulation. The strong El Niño precipitation sensitivity exhibits a century-scale hysteretic enhancement and eastward shift, mainly due to modulated deep convection anomalies by the Intertropical Convergence Zone via cloud-longwave feedback. Instead, the strong La Niña counterpart is concentrated toward the equator, mostly in the central-western Pacific, with a shorter hysteresis period of a few decades. This primarily involves changes in shallow convection and surface thermal structures during La Niña, shaped by global warming-induced upper-ocean circulation changes. The distinct climate change regimes of strong El Niño and La Niña precipitation sensitivity hold important implications for assessing mitigation consequences. The hysteresis in precipitation-sea surface temperature sensitivity differs between strong El Niño and La Niña phases, with El Niño intensifying and shifting eastward due to deep convection, while La Niña is more equator-centered with a shorter hysteresis period, according to a large ensemble simulation of symmetric CO2 ramp-up and ramp-down pathways.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-16"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01958-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01958-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

El Niño-Southern Oscillation-induced tropical Pacific precipitation anomalies have global impacts and will intensify under greenhouse warming, but the potential for mitigating these changes is less understood. Here, we identify distinct hysteresis features in the precipitation-sea surface temperature sensitivity between strong El Niño and La Niña phases using a large ensemble carbon removal numerical simulation. The strong El Niño precipitation sensitivity exhibits a century-scale hysteretic enhancement and eastward shift, mainly due to modulated deep convection anomalies by the Intertropical Convergence Zone via cloud-longwave feedback. Instead, the strong La Niña counterpart is concentrated toward the equator, mostly in the central-western Pacific, with a shorter hysteresis period of a few decades. This primarily involves changes in shallow convection and surface thermal structures during La Niña, shaped by global warming-induced upper-ocean circulation changes. The distinct climate change regimes of strong El Niño and La Niña precipitation sensitivity hold important implications for assessing mitigation consequences. The hysteresis in precipitation-sea surface temperature sensitivity differs between strong El Niño and La Niña phases, with El Niño intensifying and shifting eastward due to deep convection, while La Niña is more equator-centered with a shorter hysteresis period, according to a large ensemble simulation of symmetric CO2 ramp-up and ramp-down pathways.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳清除情景下的强厄尔尼诺和拉尼娜降水-海洋表面温度敏感性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
期刊最新文献
Emissions of HFC-23 do not reflect commitments made under the Kigali Amendment A decade of declines in toothed whale densities following the Deepwater Horizon oil spill The Russia-Ukraine war reduced food production and exports with a disparate geographical impact worldwide Fuel shifts reduce most of the greenhouse gas emissions from transportation in the United States Indian Ocean Dipole intensifies Benguela Niño through Congo River discharge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1