Multi-field quantum conferencing overcomes the network capacity limit

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-12-19 DOI:10.1038/s42005-024-01894-1
Yuan-Mei Xie, Yu-Shuo Lu, Yao Fu, Hua-Lei Yin, Zeng-Bing Chen
{"title":"Multi-field quantum conferencing overcomes the network capacity limit","authors":"Yuan-Mei Xie, Yu-Shuo Lu, Yao Fu, Hua-Lei Yin, Zeng-Bing Chen","doi":"10.1038/s42005-024-01894-1","DOIUrl":null,"url":null,"abstract":"Quantum conferencing enables multiple nodes within a quantum network to share a secure conference key for private message broadcasting. The key rate, however, is limited by the repeaterless capacity to distribute multipartite entangled states across the network. Currently, in the finite-size regime, no feasible schemes utilizing existing experimental techniques can overcome the fundamental rate-distance limit of quantum conferencing in quantum networks without repeaters. Here, we propose a practical, multi-field scheme that breaks this limit, involving virtually establishing Greenberger-Horne-Zeilinger states through post-measurement coincidence matching. This proposal features a measurement-device-independent characteristic and can directly scale to support any number of users. Simulations show that the fundamental limitation on the conference key rate can be overcome in a reasonable running time of sending 1014 pulses. We predict that it offers an efficient design for long-distance broadcast communication in future quantum networks. Quantum networks require secure conference keys for users to communicate and decrypt broadcasts. The authors propose a quantum conferencing protocol that overcomes key rate limits in networks without repeaters by using post-measurement coincidence matching, enabling secure, efficient, and flexible communication resistant to detector side channel attacks.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01894-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01894-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum conferencing enables multiple nodes within a quantum network to share a secure conference key for private message broadcasting. The key rate, however, is limited by the repeaterless capacity to distribute multipartite entangled states across the network. Currently, in the finite-size regime, no feasible schemes utilizing existing experimental techniques can overcome the fundamental rate-distance limit of quantum conferencing in quantum networks without repeaters. Here, we propose a practical, multi-field scheme that breaks this limit, involving virtually establishing Greenberger-Horne-Zeilinger states through post-measurement coincidence matching. This proposal features a measurement-device-independent characteristic and can directly scale to support any number of users. Simulations show that the fundamental limitation on the conference key rate can be overcome in a reasonable running time of sending 1014 pulses. We predict that it offers an efficient design for long-distance broadcast communication in future quantum networks. Quantum networks require secure conference keys for users to communicate and decrypt broadcasts. The authors propose a quantum conferencing protocol that overcomes key rate limits in networks without repeaters by using post-measurement coincidence matching, enabling secure, efficient, and flexible communication resistant to detector side channel attacks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多场量子会议克服了网络容量的限制
量子会议使量子网络中的多个节点能够共享用于私有消息广播的安全会议密钥。然而,密钥速率受到无中继器在网络中分配多部纠缠态的能力的限制。目前,在有限尺寸条件下,利用现有实验技术,没有可行的方案可以克服无中继器量子网络中量子会议的基本速率-距离限制。在这里,我们提出了一个实用的多场方案,打破了这一限制,涉及通过测量后的巧合匹配虚拟地建立greenberger - horn - zeilinger态。该方案具有与测量设备无关的特点,可以直接扩展以支持任意数量的用户。仿真结果表明,在发送1014个脉冲的合理运行时间内,可以克服会议密钥速率的基本限制。我们预测它为未来量子网络中的长距离广播通信提供了一种有效的设计。量子网络需要安全的会议密钥,以便用户进行通信和解密广播。作者提出了一种量子会议协议,该协议通过使用测量后的巧合匹配来克服无中继器网络中的关键速率限制,实现安全,高效和灵活的通信,抵抗探测器侧信道攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1